| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i2linesd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
i2linesd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
i2linesd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
i2linesd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 5 |
|
i2linesd.5 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 6 |
|
i2linesd.6 |
⊢ ( 𝜑 → 𝑌 = ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) |
| 7 |
|
i2linesd.7 |
⊢ ( 𝜑 → 𝑌 = ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) |
| 8 |
|
i2linesd.8 |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ≠ 0 ) |
| 9 |
1 3
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
| 10 |
3 5
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝑋 ) ∈ ℂ ) |
| 11 |
4 2
|
subcld |
⊢ ( 𝜑 → ( 𝐷 − 𝐵 ) ∈ ℂ ) |
| 12 |
1 5
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ℂ ) |
| 13 |
6 7
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + 𝐵 ) = ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) |
| 14 |
12 2 13
|
mvlraddd |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) = ( ( ( 𝐶 · 𝑋 ) + 𝐷 ) − 𝐵 ) ) |
| 15 |
10 4 2 14
|
assraddsubd |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) = ( ( 𝐶 · 𝑋 ) + ( 𝐷 − 𝐵 ) ) ) |
| 16 |
10 11 15
|
mvrladdd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) − ( 𝐶 · 𝑋 ) ) = ( 𝐷 − 𝐵 ) ) |
| 17 |
1 5 3 16
|
joinlmulsubmuld |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) · 𝑋 ) = ( 𝐷 − 𝐵 ) ) |
| 18 |
9 5 8 17
|
mvllmuld |
⊢ ( 𝜑 → 𝑋 = ( ( 𝐷 − 𝐵 ) / ( 𝐴 − 𝐶 ) ) ) |