| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 2 |
|
uncom |
⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) |
| 3 |
1 2
|
eqtr3di |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) = ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ) |
| 4 |
3
|
difeq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ∖ ( 𝐴 (,) 𝐵 ) ) ) |
| 5 |
|
difun2 |
⊢ ( ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) |
| 6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) ) |
| 7 |
|
incom |
⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ( { 𝐴 , 𝐵 } ∩ ( 𝐴 (,) 𝐵 ) ) |
| 8 |
|
iooinlbub |
⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ |
| 9 |
7 8
|
eqtr3i |
⊢ ( { 𝐴 , 𝐵 } ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ |
| 10 |
|
disj3 |
⊢ ( ( { 𝐴 , 𝐵 } ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ↔ { 𝐴 , 𝐵 } = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) ) |
| 11 |
9 10
|
mpbi |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) |
| 12 |
11
|
eqcomi |
⊢ ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) = { 𝐴 , 𝐵 } |
| 13 |
12
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) = { 𝐴 , 𝐵 } ) |
| 14 |
4 6 13
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = { 𝐴 , 𝐵 } ) |