| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjr |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 2 |
|
elpri |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } → ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 3 |
|
lbioo |
⊢ ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) |
| 4 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
| 5 |
3 4
|
mtbiri |
⊢ ( 𝑥 = 𝐴 → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 6 |
|
ubioo |
⊢ ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) |
| 7 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
| 8 |
6 7
|
mtbiri |
⊢ ( 𝑥 = 𝐵 → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 9 |
5 8
|
jaoi |
⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 10 |
2 9
|
syl |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 11 |
1 10
|
mprgbir |
⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ |