Metamath Proof Explorer


Theorem ubioo

Description: An open interval does not contain its right endpoint. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Assertion ubioo ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 )

Proof

Step Hyp Ref Expression
1 elioo3g ( 𝐵 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵𝐵 < 𝐵 ) ) )
2 1 simprbi ( 𝐵 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐵𝐵 < 𝐵 ) )
3 2 simprd ( 𝐵 ∈ ( 𝐴 (,) 𝐵 ) → 𝐵 < 𝐵 )
4 1 simplbi ( 𝐵 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ* ) )
5 4 simp2d ( 𝐵 ∈ ( 𝐴 (,) 𝐵 ) → 𝐵 ∈ ℝ* )
6 xrltnr ( 𝐵 ∈ ℝ* → ¬ 𝐵 < 𝐵 )
7 5 6 syl ( 𝐵 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝐵 < 𝐵 )
8 3 7 pm2.65i ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 )