Metamath Proof Explorer


Theorem ubioo

Description: An open interval does not contain its right endpoint. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Assertion ubioo
|- -. B e. ( A (,) B )

Proof

Step Hyp Ref Expression
1 elioo3g
 |-  ( B e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( A < B /\ B < B ) ) )
2 1 simprbi
 |-  ( B e. ( A (,) B ) -> ( A < B /\ B < B ) )
3 2 simprd
 |-  ( B e. ( A (,) B ) -> B < B )
4 1 simplbi
 |-  ( B e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* /\ B e. RR* ) )
5 4 simp2d
 |-  ( B e. ( A (,) B ) -> B e. RR* )
6 xrltnr
 |-  ( B e. RR* -> -. B < B )
7 5 6 syl
 |-  ( B e. ( A (,) B ) -> -. B < B )
8 3 7 pm2.65i
 |-  -. B e. ( A (,) B )