| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icco1.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
icco1.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 3 |
|
icco1.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
icco1.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 5 |
|
icco1.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 6 |
|
icco1.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 7 |
|
elicc2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁 ) ) ) |
| 8 |
4 5 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → ( 𝐵 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁 ) ) ) |
| 10 |
6 9
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → ( 𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁 ) ) |
| 11 |
10
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ≤ 𝑁 ) |
| 12 |
1 2 3 5 11
|
ello1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |
| 13 |
2
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 14 |
4
|
renegcld |
⊢ ( 𝜑 → - 𝑀 ∈ ℝ ) |
| 15 |
10
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝑀 ≤ 𝐵 ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝑀 ∈ ℝ ) |
| 17 |
2
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
| 18 |
16 17
|
lenegd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → ( 𝑀 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝑀 ) ) |
| 19 |
15 18
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → - 𝐵 ≤ - 𝑀 ) |
| 20 |
1 13 3 14 19
|
ello1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) |
| 21 |
2
|
o1lo1 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 22 |
12 20 21
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |