| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm3.13 | ⊢ ( ¬  ( 𝜑  ∧  𝜓 )  →  ( ¬  𝜑  ∨  ¬  𝜓 ) ) | 
						
							| 2 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜓 ,  𝐵 ,  𝐶 ) ) | 
						
							| 3 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐴 ,  𝐶 )  =  𝐶 ) | 
						
							| 4 | 3 | ifeq2d | ⊢ ( ¬  𝜑  →  if ( 𝜓 ,  𝐵 ,  if ( 𝜑 ,  𝐴 ,  𝐶 ) )  =  if ( 𝜓 ,  𝐵 ,  𝐶 ) ) | 
						
							| 5 | 2 4 | eqtr4d | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜓 ,  𝐵 ,  if ( 𝜑 ,  𝐴 ,  𝐶 ) ) ) | 
						
							| 6 |  | iffalse | ⊢ ( ¬  𝜓  →  if ( 𝜓 ,  𝐵 ,  𝐶 )  =  𝐶 ) | 
						
							| 7 | 6 | ifeq2d | ⊢ ( ¬  𝜓  →  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜑 ,  𝐴 ,  𝐶 ) ) | 
						
							| 8 |  | iffalse | ⊢ ( ¬  𝜓  →  if ( 𝜓 ,  𝐵 ,  if ( 𝜑 ,  𝐴 ,  𝐶 ) )  =  if ( 𝜑 ,  𝐴 ,  𝐶 ) ) | 
						
							| 9 | 7 8 | eqtr4d | ⊢ ( ¬  𝜓  →  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜓 ,  𝐵 ,  if ( 𝜑 ,  𝐴 ,  𝐶 ) ) ) | 
						
							| 10 | 5 9 | jaoi | ⊢ ( ( ¬  𝜑  ∨  ¬  𝜓 )  →  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜓 ,  𝐵 ,  if ( 𝜑 ,  𝐴 ,  𝐶 ) ) ) | 
						
							| 11 | 1 10 | syl | ⊢ ( ¬  ( 𝜑  ∧  𝜓 )  →  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜓 ,  𝐵 ,  if ( 𝜑 ,  𝐴 ,  𝐶 ) ) ) |