Metamath Proof Explorer


Theorem ifpbiidcor2

Description: Restatement of biid . (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpbiidcor2 ¬ if- ( 𝜑 , ¬ 𝜑 , 𝜑 )

Proof

Step Hyp Ref Expression
1 ifpbiidcor if- ( 𝜑 , 𝜑 , ¬ 𝜑 )
2 ifpnot23b ( ¬ if- ( 𝜑 , ¬ 𝜑 , 𝜑 ) ↔ if- ( 𝜑 , 𝜑 , ¬ 𝜑 ) )
3 1 2 mpbir ¬ if- ( 𝜑 , ¬ 𝜑 , 𝜑 )