Metamath Proof Explorer


Theorem ifpdfan2

Description: Define and with conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpdfan2 ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜓 , 𝜑 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝜑𝜑 )
2 1 notnoti ¬ ¬ ( 𝜑𝜑 )
3 2 biorfi ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜑 ) ) )
4 dfifp6 ( if- ( 𝜑 , 𝜓 , 𝜑 ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜑 ) ) )
5 3 4 bitr4i ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜓 , 𝜑 ) )