Description: Define and with conditional logic operator. (Contributed by RP, 25-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpdfan2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ if- ( 𝜑 , 𝜓 , 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( 𝜑 → 𝜑 ) | |
2 | 1 | notnoti | ⊢ ¬ ¬ ( 𝜑 → 𝜑 ) |
3 | 2 | biorfi | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜑 ) ) ) |
4 | dfifp6 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜑 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜑 ) ) ) | |
5 | 3 4 | bitr4i | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ if- ( 𝜑 , 𝜓 , 𝜑 ) ) |