Metamath Proof Explorer


Theorem ifpdfan2

Description: Define and with conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpdfan2 φψif-φψφ

Proof

Step Hyp Ref Expression
1 id φφ
2 1 notnoti ¬¬φφ
3 2 biorfi φψφψ¬φφ
4 dfifp6 if-φψφφψ¬φφ
5 3 4 bitr4i φψif-φψφ