Metamath Proof Explorer


Theorem ifpdfan2

Description: Define and with conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpdfan2
|- ( ( ph /\ ps ) <-> if- ( ph , ps , ph ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ph -> ph )
2 1 notnoti
 |-  -. -. ( ph -> ph )
3 2 biorfi
 |-  ( ( ph /\ ps ) <-> ( ( ph /\ ps ) \/ -. ( ph -> ph ) ) )
4 dfifp6
 |-  ( if- ( ph , ps , ph ) <-> ( ( ph /\ ps ) \/ -. ( ph -> ph ) ) )
5 3 4 bitr4i
 |-  ( ( ph /\ ps ) <-> if- ( ph , ps , ph ) )