Description: Define and with conditional logic operator. (Contributed by RP, 25-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpdfan2 | |- ( ( ph /\ ps ) <-> if- ( ph , ps , ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( ph -> ph ) |
|
2 | 1 | notnoti | |- -. -. ( ph -> ph ) |
3 | 2 | biorfi | |- ( ( ph /\ ps ) <-> ( ( ph /\ ps ) \/ -. ( ph -> ph ) ) ) |
4 | dfifp6 | |- ( if- ( ph , ps , ph ) <-> ( ( ph /\ ps ) \/ -. ( ph -> ph ) ) ) |
|
5 | 3 4 | bitr4i | |- ( ( ph /\ ps ) <-> if- ( ph , ps , ph ) ) |