Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iinss2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| iinss2d.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
| iinss2d.3 | ⊢ Ⅎ 𝑥 𝐶 | ||
| iinss2d.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| iinss2d.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) | ||
| Assertion | iinss2d | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinss2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | iinss2d.2 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | iinss2d.3 | ⊢ Ⅎ 𝑥 𝐶 | |
| 4 | iinss2d.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 5 | iinss2d.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) | |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ⊤ ) → 𝐵 ⊆ 𝐶 ) |
| 7 | 2 | n0f | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 8 | 4 7 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 9 | rextru | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ⊤ ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ⊤ ) |
| 11 | 1 6 10 | reximdd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 12 | 3 | iinssf | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |