| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinssf.1 |
⊢ Ⅎ 𝑥 𝐶 |
| 2 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 3 |
2
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 4 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 5 |
4
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 6 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
| 7 |
6
|
r19.36vf |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 8 |
5 7
|
syl |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 9 |
3 8
|
biimtrid |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 10 |
9
|
ssrdv |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |