Metamath Proof Explorer


Theorem indifundif

Description: A remarkable equation with sets. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Assertion indifundif ( ( ( 𝐴𝐵 ) ∖ 𝐶 ) ∪ ( 𝐴𝐵 ) ) = ( 𝐴 ∖ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 difindi ( 𝐴 ∖ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) )
2 difundir ( ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐵 ) ) ∖ 𝐶 ) = ( ( ( 𝐴𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) )
3 inundif ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐵 ) ) = 𝐴
4 3 difeq1i ( ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐵 ) ) ∖ 𝐶 ) = ( 𝐴𝐶 )
5 uncom ( ( ( 𝐴𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) ) = ( ( ( 𝐴𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) )
6 2 4 5 3eqtr3i ( 𝐴𝐶 ) = ( ( ( 𝐴𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) )
7 6 uneq2i ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( ( ( 𝐴𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) ) )
8 unass ( ( ( 𝐴𝐵 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( ( ( 𝐴𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) ) )
9 undifabs ( ( 𝐴𝐵 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) ) = ( 𝐴𝐵 )
10 9 uneq1i ( ( ( 𝐴𝐵 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) )
11 7 8 10 3eqtr2i ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) )
12 uncom ( ( 𝐴𝐵 ) ∪ ( ( 𝐴𝐵 ) ∖ 𝐶 ) ) = ( ( ( 𝐴𝐵 ) ∖ 𝐶 ) ∪ ( 𝐴𝐵 ) )
13 1 11 12 3eqtrri ( ( ( 𝐴𝐵 ) ∖ 𝐶 ) ∪ ( 𝐴𝐵 ) ) = ( 𝐴 ∖ ( 𝐵𝐶 ) )