Metamath Proof Explorer
Description: Shorter proof of infn0 using ax-un . (Contributed by NM, 23-Oct-2004) (Proof modification is discouraged.)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
infn0ALT |
⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
peano1 |
⊢ ∅ ∈ ω |
2 |
|
infsdomnn |
⊢ ( ( ω ≼ 𝐴 ∧ ∅ ∈ ω ) → ∅ ≺ 𝐴 ) |
3 |
1 2
|
mpan2 |
⊢ ( ω ≼ 𝐴 → ∅ ≺ 𝐴 ) |
4 |
|
reldom |
⊢ Rel ≼ |
5 |
4
|
brrelex2i |
⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
6 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
7 |
5 6
|
syl |
⊢ ( ω ≼ 𝐴 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
8 |
3 7
|
mpbid |
⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) |