Description: Alternate proof of infpss , shorter but requiring Replacement ( ax-rep ). (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | infpssALT | ⊢ ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ominf4 | ⊢ ¬ ω ∈ FinIV | |
2 | reldom | ⊢ Rel ≼ | |
3 | 2 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
4 | isfin4 | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) ) | |
5 | 3 4 | syl | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) ) |
6 | domfin4 | ⊢ ( ( 𝐴 ∈ FinIV ∧ ω ≼ 𝐴 ) → ω ∈ FinIV ) | |
7 | 6 | expcom | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ∈ FinIV → ω ∈ FinIV ) ) |
8 | 5 7 | sylbird | ⊢ ( ω ≼ 𝐴 → ( ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) → ω ∈ FinIV ) ) |
9 | 1 8 | mt3i | ⊢ ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) |