Step |
Hyp |
Ref |
Expression |
1 |
|
ominf4 |
|- -. _om e. Fin4 |
2 |
|
reldom |
|- Rel ~<_ |
3 |
2
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
4 |
|
isfin4 |
|- ( A e. _V -> ( A e. Fin4 <-> -. E. x ( x C. A /\ x ~~ A ) ) ) |
5 |
3 4
|
syl |
|- ( _om ~<_ A -> ( A e. Fin4 <-> -. E. x ( x C. A /\ x ~~ A ) ) ) |
6 |
|
domfin4 |
|- ( ( A e. Fin4 /\ _om ~<_ A ) -> _om e. Fin4 ) |
7 |
6
|
expcom |
|- ( _om ~<_ A -> ( A e. Fin4 -> _om e. Fin4 ) ) |
8 |
5 7
|
sylbird |
|- ( _om ~<_ A -> ( -. E. x ( x C. A /\ x ~~ A ) -> _om e. Fin4 ) ) |
9 |
1 8
|
mt3i |
|- ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) ) |