Metamath Proof Explorer


Theorem infpss

Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of TakeutiZaring p. 91. See also infpssALT . (Contributed by NM, 23-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infpss
|- ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) )

Proof

Step Hyp Ref Expression
1 infn0
 |-  ( _om ~<_ A -> A =/= (/) )
2 n0
 |-  ( A =/= (/) <-> E. y y e. A )
3 1 2 sylib
 |-  ( _om ~<_ A -> E. y y e. A )
4 reldom
 |-  Rel ~<_
5 4 brrelex2i
 |-  ( _om ~<_ A -> A e. _V )
6 difexg
 |-  ( A e. _V -> ( A \ { y } ) e. _V )
7 5 6 syl
 |-  ( _om ~<_ A -> ( A \ { y } ) e. _V )
8 7 adantr
 |-  ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) e. _V )
9 simpr
 |-  ( ( _om ~<_ A /\ y e. A ) -> y e. A )
10 difsnpss
 |-  ( y e. A <-> ( A \ { y } ) C. A )
11 9 10 sylib
 |-  ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) C. A )
12 infdifsn
 |-  ( _om ~<_ A -> ( A \ { y } ) ~~ A )
13 12 adantr
 |-  ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) ~~ A )
14 11 13 jca
 |-  ( ( _om ~<_ A /\ y e. A ) -> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) )
15 psseq1
 |-  ( x = ( A \ { y } ) -> ( x C. A <-> ( A \ { y } ) C. A ) )
16 breq1
 |-  ( x = ( A \ { y } ) -> ( x ~~ A <-> ( A \ { y } ) ~~ A ) )
17 15 16 anbi12d
 |-  ( x = ( A \ { y } ) -> ( ( x C. A /\ x ~~ A ) <-> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) ) )
18 8 14 17 spcedv
 |-  ( ( _om ~<_ A /\ y e. A ) -> E. x ( x C. A /\ x ~~ A ) )
19 3 18 exlimddv
 |-  ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) )