| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infn0 |
|- ( _om ~<_ A -> A =/= (/) ) |
| 2 |
|
n0 |
|- ( A =/= (/) <-> E. y y e. A ) |
| 3 |
1 2
|
sylib |
|- ( _om ~<_ A -> E. y y e. A ) |
| 4 |
|
reldom |
|- Rel ~<_ |
| 5 |
4
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
| 6 |
5
|
difexd |
|- ( _om ~<_ A -> ( A \ { y } ) e. _V ) |
| 7 |
6
|
adantr |
|- ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) e. _V ) |
| 8 |
|
simpr |
|- ( ( _om ~<_ A /\ y e. A ) -> y e. A ) |
| 9 |
|
difsnpss |
|- ( y e. A <-> ( A \ { y } ) C. A ) |
| 10 |
8 9
|
sylib |
|- ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) C. A ) |
| 11 |
|
infdifsn |
|- ( _om ~<_ A -> ( A \ { y } ) ~~ A ) |
| 12 |
11
|
adantr |
|- ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) ~~ A ) |
| 13 |
10 12
|
jca |
|- ( ( _om ~<_ A /\ y e. A ) -> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) ) |
| 14 |
|
psseq1 |
|- ( x = ( A \ { y } ) -> ( x C. A <-> ( A \ { y } ) C. A ) ) |
| 15 |
|
breq1 |
|- ( x = ( A \ { y } ) -> ( x ~~ A <-> ( A \ { y } ) ~~ A ) ) |
| 16 |
14 15
|
anbi12d |
|- ( x = ( A \ { y } ) -> ( ( x C. A /\ x ~~ A ) <-> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) ) ) |
| 17 |
7 13 16
|
spcedv |
|- ( ( _om ~<_ A /\ y e. A ) -> E. x ( x C. A /\ x ~~ A ) ) |
| 18 |
3 17
|
exlimddv |
|- ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) ) |