Metamath Proof Explorer
Description: Second AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-add02d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
int-add02d.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
int-add02d |
⊢ ( 𝜑 → ( 0 + 𝐴 ) = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
int-add02d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
int-add02d.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
3 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
4 |
3
|
addid2d |
⊢ ( 𝜑 → ( 0 + 𝐴 ) = 𝐴 ) |
5 |
4 2
|
eqtrd |
⊢ ( 𝜑 → ( 0 + 𝐴 ) = 𝐵 ) |