Metamath Proof Explorer
		
		
		
		Description:  Second AdditionZero generator rule.  (Contributed by Stanislas Polu, 7-Apr-2020)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						int-add02d.1 | 
						⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
					
					
						 | 
						 | 
						int-add02d.2 | 
						⊢ ( 𝜑  →  𝐴  =  𝐵 )  | 
					
				
					 | 
					Assertion | 
					int-add02d | 
					⊢  ( 𝜑  →  ( 0  +  𝐴 )  =  𝐵 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							int-add02d.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							int-add02d.2 | 
							⊢ ( 𝜑  →  𝐴  =  𝐵 )  | 
						
						
							| 3 | 
							
								1
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 4 | 
							
								3
							 | 
							addlidd | 
							⊢ ( 𝜑  →  ( 0  +  𝐴 )  =  𝐴 )  | 
						
						
							| 5 | 
							
								4 2
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 0  +  𝐴 )  =  𝐵 )  |