Step |
Hyp |
Ref |
Expression |
1 |
|
int-sqgeq0d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
int-sqgeq0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
int-sqgeq0d.3 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
4 |
1
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑ 2 ) ) |
5 |
3
|
oveq1d |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
6 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
7 |
6
|
sqvald |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
8 |
|
eqcom |
⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) |
9 |
8
|
imbi2i |
⊢ ( ( 𝜑 → 𝐴 = 𝐵 ) ↔ ( 𝜑 → 𝐵 = 𝐴 ) ) |
10 |
3 9
|
mpbi |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
11 |
10
|
oveq1d |
⊢ ( 𝜑 → ( 𝐵 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) |
13 |
5 12
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) |
14 |
4 13
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) |