Metamath Proof Explorer


Theorem int-sqgeq0d

Description: SquareGEQZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-sqgeq0d.1 ( 𝜑𝐴 ∈ ℝ )
int-sqgeq0d.2 ( 𝜑𝐵 ∈ ℝ )
int-sqgeq0d.3 ( 𝜑𝐴 = 𝐵 )
Assertion int-sqgeq0d ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 int-sqgeq0d.1 ( 𝜑𝐴 ∈ ℝ )
2 int-sqgeq0d.2 ( 𝜑𝐵 ∈ ℝ )
3 int-sqgeq0d.3 ( 𝜑𝐴 = 𝐵 )
4 1 sqge0d ( 𝜑 → 0 ≤ ( 𝐴 ↑ 2 ) )
5 3 oveq1d ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) )
6 2 recnd ( 𝜑𝐵 ∈ ℂ )
7 6 sqvald ( 𝜑 → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) )
8 eqcom ( 𝐴 = 𝐵𝐵 = 𝐴 )
9 8 imbi2i ( ( 𝜑𝐴 = 𝐵 ) ↔ ( 𝜑𝐵 = 𝐴 ) )
10 3 9 mpbi ( 𝜑𝐵 = 𝐴 )
11 10 oveq1d ( 𝜑 → ( 𝐵 · 𝐵 ) = ( 𝐴 · 𝐵 ) )
12 7 11 eqtrd ( 𝜑 → ( 𝐵 ↑ 2 ) = ( 𝐴 · 𝐵 ) )
13 5 12 eqtrd ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐵 ) )
14 4 13 breqtrd ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) )