Metamath Proof Explorer


Theorem int-sqgeq0d

Description: SquareGEQZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-sqgeq0d.1 φ A
int-sqgeq0d.2 φ B
int-sqgeq0d.3 φ A = B
Assertion int-sqgeq0d φ 0 A B

Proof

Step Hyp Ref Expression
1 int-sqgeq0d.1 φ A
2 int-sqgeq0d.2 φ B
3 int-sqgeq0d.3 φ A = B
4 1 sqge0d φ 0 A 2
5 3 oveq1d φ A 2 = B 2
6 2 recnd φ B
7 6 sqvald φ B 2 = B B
8 eqcom A = B B = A
9 8 imbi2i φ A = B φ B = A
10 3 9 mpbi φ B = A
11 10 oveq1d φ B B = A B
12 7 11 eqtrd φ B 2 = A B
13 5 12 eqtrd φ A 2 = A B
14 4 13 breqtrd φ 0 A B