Metamath Proof Explorer


Theorem inteqd

Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003)

Ref Expression
Hypothesis inteqd.1 ( 𝜑𝐴 = 𝐵 )
Assertion inteqd ( 𝜑 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 inteqd.1 ( 𝜑𝐴 = 𝐵 )
2 inteq ( 𝐴 = 𝐵 𝐴 = 𝐵 )
3 1 2 syl ( 𝜑 𝐴 = 𝐵 )