Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999) (Proof shortened by OpenAI, 25-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | intss | ⊢ ( 𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 → ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) ) | |
2 | 1 | ss2abdv | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 } ⊆ { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 } ) |
3 | dfint2 | ⊢ ∩ 𝐵 = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 } | |
4 | dfint2 | ⊢ ∩ 𝐴 = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 } | |
5 | 2 3 4 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴 ) |