Metamath Proof Explorer


Theorem iocssioo

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017)

Ref Expression
Assertion iocssioo ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐷 < 𝐵 ) ) → ( 𝐶 (,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-ioo (,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑥 ∈ ℝ* ∣ ( 𝑎 < 𝑥𝑥 < 𝑏 ) } )
2 df-ioc (,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑥 ∈ ℝ* ∣ ( 𝑎 < 𝑥𝑥𝑏 ) } )
3 xrlelttr ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 𝐴𝐶𝐶 < 𝑤 ) → 𝐴 < 𝑤 ) )
4 xrlelttr ( ( 𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤𝐷𝐷 < 𝐵 ) → 𝑤 < 𝐵 ) )
5 1 2 3 4 ixxss12 ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐷 < 𝐵 ) ) → ( 𝐶 (,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) )