Metamath Proof Explorer


Theorem ioopnfsup

Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion ioopnfsup ( ( 𝐴 ∈ ℝ*𝐴 ≠ +∞ ) → sup ( ( 𝐴 (,) +∞ ) , ℝ* , < ) = +∞ )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ ℝ*𝐴 ≠ +∞ ) → 𝐴 ∈ ℝ* )
2 pnfxr +∞ ∈ ℝ*
3 2 a1i ( ( 𝐴 ∈ ℝ*𝐴 ≠ +∞ ) → +∞ ∈ ℝ* )
4 nltpnft ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) )
5 4 necon2abid ( 𝐴 ∈ ℝ* → ( 𝐴 < +∞ ↔ 𝐴 ≠ +∞ ) )
6 5 biimpar ( ( 𝐴 ∈ ℝ*𝐴 ≠ +∞ ) → 𝐴 < +∞ )
7 ioon0 ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐴 (,) +∞ ) ≠ ∅ ↔ 𝐴 < +∞ ) )
8 3 7 syldan ( ( 𝐴 ∈ ℝ*𝐴 ≠ +∞ ) → ( ( 𝐴 (,) +∞ ) ≠ ∅ ↔ 𝐴 < +∞ ) )
9 6 8 mpbird ( ( 𝐴 ∈ ℝ*𝐴 ≠ +∞ ) → ( 𝐴 (,) +∞ ) ≠ ∅ )
10 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
11 idd ( ( 𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑤 < +∞ → 𝑤 < +∞ ) )
12 xrltle ( ( 𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑤 < +∞ → 𝑤 ≤ +∞ ) )
13 idd ( ( 𝐴 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤𝐴 < 𝑤 ) )
14 xrltle ( ( 𝐴 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤𝐴𝑤 ) )
15 10 11 12 13 14 ixxub ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐴 (,) +∞ ) ≠ ∅ ) → sup ( ( 𝐴 (,) +∞ ) , ℝ* , < ) = +∞ )
16 1 3 9 15 syl3anc ( ( 𝐴 ∈ ℝ*𝐴 ≠ +∞ ) → sup ( ( 𝐴 (,) +∞ ) , ℝ* , < ) = +∞ )