Metamath Proof Explorer


Theorem ioopnfsup

Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion ioopnfsup A * A +∞ sup A +∞ * < = +∞

Proof

Step Hyp Ref Expression
1 simpl A * A +∞ A *
2 pnfxr +∞ *
3 2 a1i A * A +∞ +∞ *
4 nltpnft A * A = +∞ ¬ A < +∞
5 4 necon2abid A * A < +∞ A +∞
6 5 biimpar A * A +∞ A < +∞
7 ioon0 A * +∞ * A +∞ A < +∞
8 3 7 syldan A * A +∞ A +∞ A < +∞
9 6 8 mpbird A * A +∞ A +∞
10 df-ioo . = x * , y * z * | x < z z < y
11 idd w * +∞ * w < +∞ w < +∞
12 xrltle w * +∞ * w < +∞ w +∞
13 idd A * w * A < w A < w
14 xrltle A * w * A < w A w
15 10 11 12 13 14 ixxub A * +∞ * A +∞ sup A +∞ * < = +∞
16 1 3 9 15 syl3anc A * A +∞ sup A +∞ * < = +∞