Step |
Hyp |
Ref |
Expression |
1 |
|
dip0r.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
dip0r.5 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
3 |
|
dip0r.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
4 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
5 |
1 4 3
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) ) |
6 |
5
|
eqeq1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐴 ) = 0 ↔ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) = 0 ) ) |
7 |
1 4
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℂ ) |
9 |
|
sqeq0 |
⊢ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℂ → ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) = 0 ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) = 0 ) ) |
11 |
1 2 4
|
nvz |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |
12 |
6 10 11
|
3bitrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |