| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irrednzr.1 |
⊢ 𝐼 = ( Irred ‘ 𝑅 ) |
| 2 |
|
irrednzr.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 3 |
|
irrednzr.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 5 |
1 4
|
irredcl |
⊢ ( 𝑋 ∈ 𝐼 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 8 |
1 7
|
irredn0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ≠ ( 0g ‘ 𝑅 ) ) |
| 9 |
2 3 8
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ≠ ( 0g ‘ 𝑅 ) ) |
| 10 |
6 9
|
eldifsnd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 11 |
7 4
|
ringelnzr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑅 ∈ NzRing ) |
| 12 |
2 10 11
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |