| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irrednzr.1 | ⊢ 𝐼  =  ( Irred ‘ 𝑅 ) | 
						
							| 2 |  | irrednzr.2 | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | irrednzr.3 | ⊢ ( 𝜑  →  𝑋  ∈  𝐼 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 5 | 1 4 | irredcl | ⊢ ( 𝑋  ∈  𝐼  →  𝑋  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 8 | 1 7 | irredn0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐼 )  →  𝑋  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 9 | 2 3 8 | syl2anc | ⊢ ( 𝜑  →  𝑋  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 10 | 6 9 | eldifsnd | ⊢ ( 𝜑  →  𝑋  ∈  ( ( Base ‘ 𝑅 )  ∖  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 11 | 7 4 | ringelnzr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( ( Base ‘ 𝑅 )  ∖  { ( 0g ‘ 𝑅 ) } ) )  →  𝑅  ∈  NzRing ) | 
						
							| 12 | 2 10 11 | syl2anc | ⊢ ( 𝜑  →  𝑅  ∈  NzRing ) |