| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irrednzr.1 |
|- I = ( Irred ` R ) |
| 2 |
|
irrednzr.2 |
|- ( ph -> R e. Ring ) |
| 3 |
|
irrednzr.3 |
|- ( ph -> X e. I ) |
| 4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 5 |
1 4
|
irredcl |
|- ( X e. I -> X e. ( Base ` R ) ) |
| 6 |
3 5
|
syl |
|- ( ph -> X e. ( Base ` R ) ) |
| 7 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 8 |
1 7
|
irredn0 |
|- ( ( R e. Ring /\ X e. I ) -> X =/= ( 0g ` R ) ) |
| 9 |
2 3 8
|
syl2anc |
|- ( ph -> X =/= ( 0g ` R ) ) |
| 10 |
6 9
|
eldifsnd |
|- ( ph -> X e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 11 |
7 4
|
ringelnzr |
|- ( ( R e. Ring /\ X e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) -> R e. NzRing ) |
| 12 |
2 10 11
|
syl2anc |
|- ( ph -> R e. NzRing ) |