| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irrednzr.1 |  |-  I = ( Irred ` R ) | 
						
							| 2 |  | irrednzr.2 |  |-  ( ph -> R e. Ring ) | 
						
							| 3 |  | irrednzr.3 |  |-  ( ph -> X e. I ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 | 1 4 | irredcl |  |-  ( X e. I -> X e. ( Base ` R ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( ph -> X e. ( Base ` R ) ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 8 | 1 7 | irredn0 |  |-  ( ( R e. Ring /\ X e. I ) -> X =/= ( 0g ` R ) ) | 
						
							| 9 | 2 3 8 | syl2anc |  |-  ( ph -> X =/= ( 0g ` R ) ) | 
						
							| 10 | 6 9 | eldifsnd |  |-  ( ph -> X e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) | 
						
							| 11 | 7 4 | ringelnzr |  |-  ( ( R e. Ring /\ X e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) -> R e. NzRing ) | 
						
							| 12 | 2 10 11 | syl2anc |  |-  ( ph -> R e. NzRing ) |