| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isbn.1 |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
elin |
⊢ ( 𝑊 ∈ ( NrmVec ∩ CMetSp ) ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ) ) |
| 3 |
2
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ CMetSp ) ∧ 𝐹 ∈ CMetSp ) ↔ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ) ∧ 𝐹 ∈ CMetSp ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
| 5 |
4 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑤 = 𝑊 → ( ( Scalar ‘ 𝑤 ) ∈ CMetSp ↔ 𝐹 ∈ CMetSp ) ) |
| 7 |
|
df-bn |
⊢ Ban = { 𝑤 ∈ ( NrmVec ∩ CMetSp ) ∣ ( Scalar ‘ 𝑤 ) ∈ CMetSp } |
| 8 |
6 7
|
elrab2 |
⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ ( NrmVec ∩ CMetSp ) ∧ 𝐹 ∈ CMetSp ) ) |
| 9 |
|
df-3an |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ↔ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ) ∧ 𝐹 ∈ CMetSp ) ) |
| 10 |
3 8 9
|
3bitr4i |
⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) |