Metamath Proof Explorer


Theorem iscsrg

Description: A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025)

Ref Expression
Hypothesis iscsrg.g 𝐺 = ( mulGrp ‘ 𝑅 )
Assertion iscsrg ( 𝑅 ∈ CSRing ↔ ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ) )

Proof

Step Hyp Ref Expression
1 iscsrg.g 𝐺 = ( mulGrp ‘ 𝑅 )
2 fveq2 ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) )
3 2 1 eqtr4di ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = 𝐺 )
4 3 eleq1d ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ∈ CMnd ↔ 𝐺 ∈ CMnd ) )
5 df-csring CSRing = { 𝑟 ∈ SRing ∣ ( mulGrp ‘ 𝑟 ) ∈ CMnd }
6 4 5 elrab2 ( 𝑅 ∈ CSRing ↔ ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ) )