Metamath Proof Explorer


Theorem iscsrg

Description: A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025)

Ref Expression
Hypothesis iscsrg.g
|- G = ( mulGrp ` R )
Assertion iscsrg
|- ( R e. CSRing <-> ( R e. SRing /\ G e. CMnd ) )

Proof

Step Hyp Ref Expression
1 iscsrg.g
 |-  G = ( mulGrp ` R )
2 fveq2
 |-  ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) )
3 2 1 eqtr4di
 |-  ( r = R -> ( mulGrp ` r ) = G )
4 3 eleq1d
 |-  ( r = R -> ( ( mulGrp ` r ) e. CMnd <-> G e. CMnd ) )
5 df-csring
 |-  CSRing = { r e. SRing | ( mulGrp ` r ) e. CMnd }
6 4 5 elrab2
 |-  ( R e. CSRing <-> ( R e. SRing /\ G e. CMnd ) )