Metamath Proof Explorer


Theorem iscsrg

Description: A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025)

Ref Expression
Hypothesis iscsrg.g G = mulGrp R
Assertion iscsrg R CSRing R SRing G CMnd

Proof

Step Hyp Ref Expression
1 iscsrg.g G = mulGrp R
2 fveq2 r = R mulGrp r = mulGrp R
3 2 1 eqtr4di r = R mulGrp r = G
4 3 eleq1d r = R mulGrp r CMnd G CMnd
5 df-csring CSRing = r SRing | mulGrp r CMnd
6 4 5 elrab2 R CSRing R SRing G CMnd