| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isldsys.l | ⊢ 𝐿  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) ) } | 
						
							| 2 |  | eleq2 | ⊢ ( 𝑠  =  𝑆  →  ( ∅  ∈  𝑠  ↔  ∅  ∈  𝑆 ) ) | 
						
							| 3 |  | eleq2 | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑂  ∖  𝑥 )  ∈  𝑠  ↔  ( 𝑂  ∖  𝑥 )  ∈  𝑆 ) ) | 
						
							| 4 | 3 | raleqbi1dv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ↔  ∀ 𝑥  ∈  𝑆 ( 𝑂  ∖  𝑥 )  ∈  𝑆 ) ) | 
						
							| 5 |  | pweq | ⊢ ( 𝑠  =  𝑆  →  𝒫  𝑠  =  𝒫  𝑆 ) | 
						
							| 6 |  | eleq2 | ⊢ ( 𝑠  =  𝑆  →  ( ∪  𝑥  ∈  𝑠  ↔  ∪  𝑥  ∈  𝑆 ) ) | 
						
							| 7 | 6 | imbi2d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 )  ↔  ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑆 ) ) ) | 
						
							| 8 | 5 7 | raleqbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 )  ↔  ∀ 𝑥  ∈  𝒫  𝑆 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑆 ) ) ) | 
						
							| 9 | 2 4 8 | 3anbi123d | ⊢ ( 𝑠  =  𝑆  →  ( ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) )  ↔  ( ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ( 𝑂  ∖  𝑥 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝒫  𝑆 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑆 ) ) ) ) | 
						
							| 10 | 9 1 | elrab2 | ⊢ ( 𝑆  ∈  𝐿  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ( 𝑂  ∖  𝑥 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝒫  𝑆 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑆 ) ) ) ) |