Metamath Proof Explorer


Theorem isldsys

Description: The property of being a lambda-system or Dynkin system. Lambda-systems contain the empty set, are closed under complement, and closed under countable disjoint union. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis isldsys.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
Assertion isldsys ( 𝑆𝐿 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 isldsys.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
2 eleq2 ( 𝑠 = 𝑆 → ( ∅ ∈ 𝑠 ↔ ∅ ∈ 𝑆 ) )
3 eleq2 ( 𝑠 = 𝑆 → ( ( 𝑂𝑥 ) ∈ 𝑠 ↔ ( 𝑂𝑥 ) ∈ 𝑆 ) )
4 3 raleqbi1dv ( 𝑠 = 𝑆 → ( ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ↔ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ) )
5 pweq ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 )
6 eleq2 ( 𝑠 = 𝑆 → ( 𝑥𝑠 𝑥𝑆 ) )
7 6 imbi2d ( 𝑠 = 𝑆 → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ↔ ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑆 ) ) )
8 5 7 raleqbidv ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ↔ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑆 ) ) )
9 2 4 8 3anbi123d ( 𝑠 = 𝑆 → ( ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑆 ) ) ) )
10 9 1 elrab2 ( 𝑆𝐿 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑆 ) ) ) )