Step |
Hyp |
Ref |
Expression |
1 |
|
isldsys.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
2 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ∅ ∈ 𝑠 ↔ ∅ ∈ 𝑆 ) ) |
3 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ↔ ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ) ) |
4 |
3
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ↔ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ) ) |
5 |
|
pweq |
⊢ ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 ) |
6 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑥 ∈ 𝑆 ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ↔ ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑆 ) ) ) |
8 |
5 7
|
raleqbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑆 ) ) ) |
9 |
2 4 8
|
3anbi123d |
⊢ ( 𝑠 = 𝑆 → ( ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
10 |
9 1
|
elrab2 |
⊢ ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |