Step |
Hyp |
Ref |
Expression |
1 |
|
isldsys.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
2 |
|
pwexg |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V ) |
3 |
|
pwidg |
⊢ ( 𝒫 𝑂 ∈ V → 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂 ) |
4 |
2 3
|
syl |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂 ) |
5 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑂 |
6 |
5
|
a1i |
⊢ ( 𝑂 ∈ 𝑉 → ∅ ∈ 𝒫 𝑂 ) |
7 |
|
pwidg |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑂 ) → 𝑂 ∈ 𝒫 𝑂 ) |
9 |
8
|
elpwdifcl |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑂 ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ) |
10 |
9
|
ralrimiva |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ) |
11 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝒫 𝑂 → 𝑥 ⊆ 𝒫 𝑂 ) |
12 |
|
sspwuni |
⊢ ( 𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂 ) |
13 |
11 12
|
sylib |
⊢ ( 𝑥 ∈ 𝒫 𝒫 𝑂 → ∪ 𝑥 ⊆ 𝑂 ) |
14 |
13
|
adantl |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝒫 𝑂 ) → ∪ 𝑥 ⊆ 𝑂 ) |
15 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
16 |
15
|
elpw |
⊢ ( ∪ 𝑥 ∈ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂 ) |
17 |
14 16
|
sylibr |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝒫 𝑂 ) → ∪ 𝑥 ∈ 𝒫 𝑂 ) |
18 |
17
|
a1d |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝒫 𝑂 ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) |
19 |
18
|
ralrimiva |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) |
20 |
6 10 19
|
3jca |
⊢ ( 𝑂 ∈ 𝑉 → ( ∅ ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) ) |
21 |
1
|
isldsys |
⊢ ( 𝒫 𝑂 ∈ 𝐿 ↔ ( 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) ) ) |
22 |
4 20 21
|
sylanbrc |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ 𝐿 ) |