Metamath Proof Explorer


Theorem pwldsys

Description: The power set of the universe set O is always a lambda-system. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Hypothesis isldsys.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
Assertion pwldsys ( 𝑂𝑉 → 𝒫 𝑂𝐿 )

Proof

Step Hyp Ref Expression
1 isldsys.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
2 pwexg ( 𝑂𝑉 → 𝒫 𝑂 ∈ V )
3 pwidg ( 𝒫 𝑂 ∈ V → 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂 )
4 2 3 syl ( 𝑂𝑉 → 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂 )
5 0elpw ∅ ∈ 𝒫 𝑂
6 5 a1i ( 𝑂𝑉 → ∅ ∈ 𝒫 𝑂 )
7 pwidg ( 𝑂𝑉𝑂 ∈ 𝒫 𝑂 )
8 7 adantr ( ( 𝑂𝑉𝑥 ∈ 𝒫 𝑂 ) → 𝑂 ∈ 𝒫 𝑂 )
9 8 elpwdifcl ( ( 𝑂𝑉𝑥 ∈ 𝒫 𝑂 ) → ( 𝑂𝑥 ) ∈ 𝒫 𝑂 )
10 9 ralrimiva ( 𝑂𝑉 → ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂𝑥 ) ∈ 𝒫 𝑂 )
11 elpwi ( 𝑥 ∈ 𝒫 𝒫 𝑂𝑥 ⊆ 𝒫 𝑂 )
12 sspwuni ( 𝑥 ⊆ 𝒫 𝑂 𝑥𝑂 )
13 11 12 sylib ( 𝑥 ∈ 𝒫 𝒫 𝑂 𝑥𝑂 )
14 13 adantl ( ( 𝑂𝑉𝑥 ∈ 𝒫 𝒫 𝑂 ) → 𝑥𝑂 )
15 vuniex 𝑥 ∈ V
16 15 elpw ( 𝑥 ∈ 𝒫 𝑂 𝑥𝑂 )
17 14 16 sylibr ( ( 𝑂𝑉𝑥 ∈ 𝒫 𝒫 𝑂 ) → 𝑥 ∈ 𝒫 𝑂 )
18 17 a1d ( ( 𝑂𝑉𝑥 ∈ 𝒫 𝒫 𝑂 ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥 ∈ 𝒫 𝑂 ) )
19 18 ralrimiva ( 𝑂𝑉 → ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥 ∈ 𝒫 𝑂 ) )
20 6 10 19 3jca ( 𝑂𝑉 → ( ∅ ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂𝑥 ) ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥 ∈ 𝒫 𝑂 ) ) )
21 1 isldsys ( 𝒫 𝑂𝐿 ↔ ( 𝒫 𝑂 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂𝑥 ) ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥 ∈ 𝒫 𝑂 ) ) ) )
22 4 20 21 sylanbrc ( 𝑂𝑉 → 𝒫 𝑂𝐿 )