| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isldsys.l | ⊢ 𝐿  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) ) } | 
						
							| 2 |  | pwexg | ⊢ ( 𝑂  ∈  𝑉  →  𝒫  𝑂  ∈  V ) | 
						
							| 3 |  | pwidg | ⊢ ( 𝒫  𝑂  ∈  V  →  𝒫  𝑂  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑂  ∈  𝑉  →  𝒫  𝑂  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 5 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝑂 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑂  ∈  𝑉  →  ∅  ∈  𝒫  𝑂 ) | 
						
							| 7 |  | pwidg | ⊢ ( 𝑂  ∈  𝑉  →  𝑂  ∈  𝒫  𝑂 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝑥  ∈  𝒫  𝑂 )  →  𝑂  ∈  𝒫  𝑂 ) | 
						
							| 9 | 8 | elpwdifcl | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝑥  ∈  𝒫  𝑂 )  →  ( 𝑂  ∖  𝑥 )  ∈  𝒫  𝑂 ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( 𝑂  ∈  𝑉  →  ∀ 𝑥  ∈  𝒫  𝑂 ( 𝑂  ∖  𝑥 )  ∈  𝒫  𝑂 ) | 
						
							| 11 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝒫  𝑂  →  𝑥  ⊆  𝒫  𝑂 ) | 
						
							| 12 |  | sspwuni | ⊢ ( 𝑥  ⊆  𝒫  𝑂  ↔  ∪  𝑥  ⊆  𝑂 ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( 𝑥  ∈  𝒫  𝒫  𝑂  →  ∪  𝑥  ⊆  𝑂 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝑥  ∈  𝒫  𝒫  𝑂 )  →  ∪  𝑥  ⊆  𝑂 ) | 
						
							| 15 |  | vuniex | ⊢ ∪  𝑥  ∈  V | 
						
							| 16 | 15 | elpw | ⊢ ( ∪  𝑥  ∈  𝒫  𝑂  ↔  ∪  𝑥  ⊆  𝑂 ) | 
						
							| 17 | 14 16 | sylibr | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝑥  ∈  𝒫  𝒫  𝑂 )  →  ∪  𝑥  ∈  𝒫  𝑂 ) | 
						
							| 18 | 17 | a1d | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝑥  ∈  𝒫  𝒫  𝑂 )  →  ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝒫  𝑂 ) ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( 𝑂  ∈  𝑉  →  ∀ 𝑥  ∈  𝒫  𝒫  𝑂 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝒫  𝑂 ) ) | 
						
							| 20 | 6 10 19 | 3jca | ⊢ ( 𝑂  ∈  𝑉  →  ( ∅  ∈  𝒫  𝑂  ∧  ∀ 𝑥  ∈  𝒫  𝑂 ( 𝑂  ∖  𝑥 )  ∈  𝒫  𝑂  ∧  ∀ 𝑥  ∈  𝒫  𝒫  𝑂 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝒫  𝑂 ) ) ) | 
						
							| 21 | 1 | isldsys | ⊢ ( 𝒫  𝑂  ∈  𝐿  ↔  ( 𝒫  𝑂  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  𝒫  𝑂  ∧  ∀ 𝑥  ∈  𝒫  𝑂 ( 𝑂  ∖  𝑥 )  ∈  𝒫  𝑂  ∧  ∀ 𝑥  ∈  𝒫  𝒫  𝑂 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝒫  𝑂 ) ) ) ) | 
						
							| 22 | 4 20 21 | sylanbrc | ⊢ ( 𝑂  ∈  𝑉  →  𝒫  𝑂  ∈  𝐿 ) |