Metamath Proof Explorer


Theorem pwldsys

Description: The power set of the universe set O is always a lambda-system. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Hypothesis isldsys.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
Assertion pwldsys O V 𝒫 O L

Proof

Step Hyp Ref Expression
1 isldsys.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
2 pwexg O V 𝒫 O V
3 pwidg 𝒫 O V 𝒫 O 𝒫 𝒫 O
4 2 3 syl O V 𝒫 O 𝒫 𝒫 O
5 0elpw 𝒫 O
6 5 a1i O V 𝒫 O
7 pwidg O V O 𝒫 O
8 7 adantr O V x 𝒫 O O 𝒫 O
9 8 elpwdifcl O V x 𝒫 O O x 𝒫 O
10 9 ralrimiva O V x 𝒫 O O x 𝒫 O
11 elpwi x 𝒫 𝒫 O x 𝒫 O
12 sspwuni x 𝒫 O x O
13 11 12 sylib x 𝒫 𝒫 O x O
14 13 adantl O V x 𝒫 𝒫 O x O
15 vuniex x V
16 15 elpw x 𝒫 O x O
17 14 16 sylibr O V x 𝒫 𝒫 O x 𝒫 O
18 17 a1d O V x 𝒫 𝒫 O x ω Disj y x y x 𝒫 O
19 18 ralrimiva O V x 𝒫 𝒫 O x ω Disj y x y x 𝒫 O
20 6 10 19 3jca O V 𝒫 O x 𝒫 O O x 𝒫 O x 𝒫 𝒫 O x ω Disj y x y x 𝒫 O
21 1 isldsys 𝒫 O L 𝒫 O 𝒫 𝒫 O 𝒫 O x 𝒫 O O x 𝒫 O x 𝒫 𝒫 O x ω Disj y x y x 𝒫 O
22 4 20 21 sylanbrc O V 𝒫 O L