Step |
Hyp |
Ref |
Expression |
1 |
|
isldsys.l |
|
2 |
|
unelldsys.s |
|
3 |
|
unelldsys.a |
|
4 |
|
unelldsys.b |
|
5 |
|
unelldsys.c |
|
6 |
|
uneq1 |
|
7 |
6
|
adantl |
|
8 |
|
uncom |
|
9 |
|
un0 |
|
10 |
8 9
|
eqtr3i |
|
11 |
7 10
|
eqtrdi |
|
12 |
4
|
adantr |
|
13 |
11 12
|
eqeltrd |
|
14 |
|
uniprg |
|
15 |
3 4 14
|
syl2anc |
|
16 |
15
|
adantr |
|
17 |
|
prct |
|
18 |
3 4 17
|
syl2anc |
|
19 |
18
|
adantr |
|
20 |
5
|
adantr |
|
21 |
3
|
adantr |
|
22 |
4
|
adantr |
|
23 |
|
n0 |
|
24 |
23
|
biimpi |
|
25 |
24
|
adantl |
|
26 |
|
disjel |
|
27 |
5 26
|
sylan |
|
28 |
|
nelne1 |
|
29 |
28
|
adantll |
|
30 |
27 29
|
mpdan |
|
31 |
30
|
adantlr |
|
32 |
25 31
|
exlimddv |
|
33 |
|
id |
|
34 |
|
id |
|
35 |
33 34
|
disjprgw |
|
36 |
21 22 32 35
|
syl3anc |
|
37 |
20 36
|
mpbird |
|
38 |
|
breq1 |
|
39 |
|
disjeq1 |
|
40 |
38 39
|
anbi12d |
|
41 |
|
unieq |
|
42 |
41
|
eleq1d |
|
43 |
40 42
|
imbi12d |
|
44 |
|
biid |
|
45 |
|
difeq2 |
|
46 |
45
|
eleq1d |
|
47 |
46
|
cbvralvw |
|
48 |
|
breq1 |
|
49 |
|
disjeq1 |
|
50 |
48 49
|
anbi12d |
|
51 |
|
unieq |
|
52 |
51
|
eleq1d |
|
53 |
50 52
|
imbi12d |
|
54 |
53
|
cbvralvw |
|
55 |
44 47 54
|
3anbi123i |
|
56 |
55
|
rabbii |
|
57 |
1 56
|
eqtri |
|
58 |
57
|
isldsys |
|
59 |
2 58
|
sylib |
|
60 |
59
|
simprd |
|
61 |
60
|
simp3d |
|
62 |
|
prelpwi |
|
63 |
3 4 62
|
syl2anc |
|
64 |
43 61 63
|
rspcdva |
|
65 |
64
|
adantr |
|
66 |
19 37 65
|
mp2and |
|
67 |
16 66
|
eqeltrrd |
|
68 |
13 67
|
pm2.61dane |
|