Step |
Hyp |
Ref |
Expression |
1 |
|
isldsys.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
2 |
|
unelldsys.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝐿 ) |
3 |
|
unelldsys.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
4 |
|
unelldsys.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
5 |
|
unelldsys.c |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
6 |
|
uneq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ∪ 𝐵 ) = ( ∅ ∪ 𝐵 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( 𝐴 ∪ 𝐵 ) = ( ∅ ∪ 𝐵 ) ) |
8 |
|
uncom |
⊢ ( 𝐵 ∪ ∅ ) = ( ∅ ∪ 𝐵 ) |
9 |
|
un0 |
⊢ ( 𝐵 ∪ ∅ ) = 𝐵 |
10 |
8 9
|
eqtr3i |
⊢ ( ∅ ∪ 𝐵 ) = 𝐵 |
11 |
7 10
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐵 ∈ 𝑆 ) |
13 |
11 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ) |
14 |
|
uniprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
15 |
3 4 14
|
syl2anc |
⊢ ( 𝜑 → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
17 |
|
prct |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → { 𝐴 , 𝐵 } ≼ ω ) |
18 |
3 4 17
|
syl2anc |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≼ ω ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → { 𝐴 , 𝐵 } ≼ ω ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ 𝑆 ) |
22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ 𝑆 ) |
23 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
24 |
23
|
biimpi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑧 𝑧 ∈ 𝐴 ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧 𝑧 ∈ 𝐴 ) |
26 |
|
disjel |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑧 ∈ 𝐴 ) → ¬ 𝑧 ∈ 𝐵 ) |
27 |
5 26
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ¬ 𝑧 ∈ 𝐵 ) |
28 |
|
nelne1 |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
29 |
28
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ¬ 𝑧 ∈ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
30 |
27 29
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐴 ≠ 𝐵 ) |
31 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ 𝐴 ) → 𝐴 ≠ 𝐵 ) |
32 |
25 31
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ 𝐵 ) |
33 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
34 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
35 |
33 34
|
disjprgw |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
36 |
21 22 32 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ( Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
37 |
20 36
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) |
38 |
|
breq1 |
⊢ ( 𝑧 = { 𝐴 , 𝐵 } → ( 𝑧 ≼ ω ↔ { 𝐴 , 𝐵 } ≼ ω ) ) |
39 |
|
disjeq1 |
⊢ ( 𝑧 = { 𝐴 , 𝐵 } → ( Disj 𝑦 ∈ 𝑧 𝑦 ↔ Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) ) |
40 |
38 39
|
anbi12d |
⊢ ( 𝑧 = { 𝐴 , 𝐵 } → ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ↔ ( { 𝐴 , 𝐵 } ≼ ω ∧ Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) ) ) |
41 |
|
unieq |
⊢ ( 𝑧 = { 𝐴 , 𝐵 } → ∪ 𝑧 = ∪ { 𝐴 , 𝐵 } ) |
42 |
41
|
eleq1d |
⊢ ( 𝑧 = { 𝐴 , 𝐵 } → ( ∪ 𝑧 ∈ 𝑆 ↔ ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) ) |
43 |
40 42
|
imbi12d |
⊢ ( 𝑧 = { 𝐴 , 𝐵 } → ( ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑆 ) ↔ ( ( { 𝐴 , 𝐵 } ≼ ω ∧ Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) → ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) ) ) |
44 |
|
biid |
⊢ ( ∅ ∈ 𝑠 ↔ ∅ ∈ 𝑠 ) |
45 |
|
difeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑂 ∖ 𝑥 ) = ( 𝑂 ∖ 𝑧 ) ) |
46 |
45
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ↔ ( 𝑂 ∖ 𝑧 ) ∈ 𝑠 ) ) |
47 |
46
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ↔ ∀ 𝑧 ∈ 𝑠 ( 𝑂 ∖ 𝑧 ) ∈ 𝑠 ) |
48 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≼ ω ↔ 𝑧 ≼ ω ) ) |
49 |
|
disjeq1 |
⊢ ( 𝑥 = 𝑧 → ( Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ 𝑧 𝑦 ) ) |
50 |
48 49
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ↔ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) ) |
51 |
|
unieq |
⊢ ( 𝑥 = 𝑧 → ∪ 𝑥 = ∪ 𝑧 ) |
52 |
51
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑧 ∈ 𝑠 ) ) |
53 |
50 52
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ↔ ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑠 ) ) ) |
54 |
53
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ↔ ∀ 𝑧 ∈ 𝒫 𝑠 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑠 ) ) |
55 |
44 47 54
|
3anbi123i |
⊢ ( ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) ↔ ( ∅ ∈ 𝑠 ∧ ∀ 𝑧 ∈ 𝑠 ( 𝑂 ∖ 𝑧 ) ∈ 𝑠 ∧ ∀ 𝑧 ∈ 𝒫 𝑠 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑠 ) ) ) |
56 |
55
|
rabbii |
⊢ { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑧 ∈ 𝑠 ( 𝑂 ∖ 𝑧 ) ∈ 𝑠 ∧ ∀ 𝑧 ∈ 𝒫 𝑠 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑠 ) ) } |
57 |
1 56
|
eqtri |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑧 ∈ 𝑠 ( 𝑂 ∖ 𝑧 ) ∈ 𝑠 ∧ ∀ 𝑧 ∈ 𝒫 𝑠 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑠 ) ) } |
58 |
57
|
isldsys |
⊢ ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 ( 𝑂 ∖ 𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑆 ) ) ) ) |
59 |
2 58
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 ( 𝑂 ∖ 𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑆 ) ) ) ) |
60 |
59
|
simprd |
⊢ ( 𝜑 → ( ∅ ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 ( 𝑂 ∖ 𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑆 ) ) ) |
61 |
60
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑆 ) ) |
62 |
|
prelpwi |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 ) |
63 |
3 4 62
|
syl2anc |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 ) |
64 |
43 61 63
|
rspcdva |
⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ≼ ω ∧ Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) → ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ( ( { 𝐴 , 𝐵 } ≼ ω ∧ Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) → ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) ) |
66 |
19 37 65
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) |
67 |
16 66
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ) |
68 |
13 67
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ) |