Metamath Proof Explorer


Theorem unelldsys

Description: Lambda-systems are closed under disjoint set unions. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Hypotheses isldsys.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
unelldsys.s ( 𝜑𝑆𝐿 )
unelldsys.a ( 𝜑𝐴𝑆 )
unelldsys.b ( 𝜑𝐵𝑆 )
unelldsys.c ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
Assertion unelldsys ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 isldsys.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
2 unelldsys.s ( 𝜑𝑆𝐿 )
3 unelldsys.a ( 𝜑𝐴𝑆 )
4 unelldsys.b ( 𝜑𝐵𝑆 )
5 unelldsys.c ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
6 uneq1 ( 𝐴 = ∅ → ( 𝐴𝐵 ) = ( ∅ ∪ 𝐵 ) )
7 6 adantl ( ( 𝜑𝐴 = ∅ ) → ( 𝐴𝐵 ) = ( ∅ ∪ 𝐵 ) )
8 uncom ( 𝐵 ∪ ∅ ) = ( ∅ ∪ 𝐵 )
9 un0 ( 𝐵 ∪ ∅ ) = 𝐵
10 8 9 eqtr3i ( ∅ ∪ 𝐵 ) = 𝐵
11 7 10 eqtrdi ( ( 𝜑𝐴 = ∅ ) → ( 𝐴𝐵 ) = 𝐵 )
12 4 adantr ( ( 𝜑𝐴 = ∅ ) → 𝐵𝑆 )
13 11 12 eqeltrd ( ( 𝜑𝐴 = ∅ ) → ( 𝐴𝐵 ) ∈ 𝑆 )
14 uniprg ( ( 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
15 3 4 14 syl2anc ( 𝜑 { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
16 15 adantr ( ( 𝜑𝐴 ≠ ∅ ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
17 prct ( ( 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ≼ ω )
18 3 4 17 syl2anc ( 𝜑 → { 𝐴 , 𝐵 } ≼ ω )
19 18 adantr ( ( 𝜑𝐴 ≠ ∅ ) → { 𝐴 , 𝐵 } ≼ ω )
20 5 adantr ( ( 𝜑𝐴 ≠ ∅ ) → ( 𝐴𝐵 ) = ∅ )
21 3 adantr ( ( 𝜑𝐴 ≠ ∅ ) → 𝐴𝑆 )
22 4 adantr ( ( 𝜑𝐴 ≠ ∅ ) → 𝐵𝑆 )
23 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧𝐴 )
24 23 biimpi ( 𝐴 ≠ ∅ → ∃ 𝑧 𝑧𝐴 )
25 24 adantl ( ( 𝜑𝐴 ≠ ∅ ) → ∃ 𝑧 𝑧𝐴 )
26 disjel ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝑧𝐴 ) → ¬ 𝑧𝐵 )
27 5 26 sylan ( ( 𝜑𝑧𝐴 ) → ¬ 𝑧𝐵 )
28 nelne1 ( ( 𝑧𝐴 ∧ ¬ 𝑧𝐵 ) → 𝐴𝐵 )
29 28 adantll ( ( ( 𝜑𝑧𝐴 ) ∧ ¬ 𝑧𝐵 ) → 𝐴𝐵 )
30 27 29 mpdan ( ( 𝜑𝑧𝐴 ) → 𝐴𝐵 )
31 30 adantlr ( ( ( 𝜑𝐴 ≠ ∅ ) ∧ 𝑧𝐴 ) → 𝐴𝐵 )
32 25 31 exlimddv ( ( 𝜑𝐴 ≠ ∅ ) → 𝐴𝐵 )
33 id ( 𝑦 = 𝐴𝑦 = 𝐴 )
34 id ( 𝑦 = 𝐵𝑦 = 𝐵 )
35 33 34 disjprgw ( ( 𝐴𝑆𝐵𝑆𝐴𝐵 ) → ( Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ↔ ( 𝐴𝐵 ) = ∅ ) )
36 21 22 32 35 syl3anc ( ( 𝜑𝐴 ≠ ∅ ) → ( Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ↔ ( 𝐴𝐵 ) = ∅ ) )
37 20 36 mpbird ( ( 𝜑𝐴 ≠ ∅ ) → Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 )
38 breq1 ( 𝑧 = { 𝐴 , 𝐵 } → ( 𝑧 ≼ ω ↔ { 𝐴 , 𝐵 } ≼ ω ) )
39 disjeq1 ( 𝑧 = { 𝐴 , 𝐵 } → ( Disj 𝑦𝑧 𝑦Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) )
40 38 39 anbi12d ( 𝑧 = { 𝐴 , 𝐵 } → ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) ↔ ( { 𝐴 , 𝐵 } ≼ ω ∧ Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) ) )
41 unieq ( 𝑧 = { 𝐴 , 𝐵 } → 𝑧 = { 𝐴 , 𝐵 } )
42 41 eleq1d ( 𝑧 = { 𝐴 , 𝐵 } → ( 𝑧𝑆 { 𝐴 , 𝐵 } ∈ 𝑆 ) )
43 40 42 imbi12d ( 𝑧 = { 𝐴 , 𝐵 } → ( ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑆 ) ↔ ( ( { 𝐴 , 𝐵 } ≼ ω ∧ Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) → { 𝐴 , 𝐵 } ∈ 𝑆 ) ) )
44 biid ( ∅ ∈ 𝑠 ↔ ∅ ∈ 𝑠 )
45 difeq2 ( 𝑥 = 𝑧 → ( 𝑂𝑥 ) = ( 𝑂𝑧 ) )
46 45 eleq1d ( 𝑥 = 𝑧 → ( ( 𝑂𝑥 ) ∈ 𝑠 ↔ ( 𝑂𝑧 ) ∈ 𝑠 ) )
47 46 cbvralvw ( ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ↔ ∀ 𝑧𝑠 ( 𝑂𝑧 ) ∈ 𝑠 )
48 breq1 ( 𝑥 = 𝑧 → ( 𝑥 ≼ ω ↔ 𝑧 ≼ ω ) )
49 disjeq1 ( 𝑥 = 𝑧 → ( Disj 𝑦𝑥 𝑦Disj 𝑦𝑧 𝑦 ) )
50 48 49 anbi12d ( 𝑥 = 𝑧 → ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ↔ ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) ) )
51 unieq ( 𝑥 = 𝑧 𝑥 = 𝑧 )
52 51 eleq1d ( 𝑥 = 𝑧 → ( 𝑥𝑠 𝑧𝑠 ) )
53 50 52 imbi12d ( 𝑥 = 𝑧 → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ↔ ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑠 ) ) )
54 53 cbvralvw ( ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ↔ ∀ 𝑧 ∈ 𝒫 𝑠 ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑠 ) )
55 44 47 54 3anbi123i ( ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) ↔ ( ∅ ∈ 𝑠 ∧ ∀ 𝑧𝑠 ( 𝑂𝑧 ) ∈ 𝑠 ∧ ∀ 𝑧 ∈ 𝒫 𝑠 ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑠 ) ) )
56 55 rabbii { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) } = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑧𝑠 ( 𝑂𝑧 ) ∈ 𝑠 ∧ ∀ 𝑧 ∈ 𝒫 𝑠 ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑠 ) ) }
57 1 56 eqtri 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑧𝑠 ( 𝑂𝑧 ) ∈ 𝑠 ∧ ∀ 𝑧 ∈ 𝒫 𝑠 ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑠 ) ) }
58 57 isldsys ( 𝑆𝐿 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑧𝑆 ( 𝑂𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑆 ) ) ) )
59 2 58 sylib ( 𝜑 → ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑧𝑆 ( 𝑂𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑆 ) ) ) )
60 59 simprd ( 𝜑 → ( ∅ ∈ 𝑆 ∧ ∀ 𝑧𝑆 ( 𝑂𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑆 ) ) )
61 60 simp3d ( 𝜑 → ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦 ) → 𝑧𝑆 ) )
62 prelpwi ( ( 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 )
63 3 4 62 syl2anc ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 )
64 43 61 63 rspcdva ( 𝜑 → ( ( { 𝐴 , 𝐵 } ≼ ω ∧ Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) → { 𝐴 , 𝐵 } ∈ 𝑆 ) )
65 64 adantr ( ( 𝜑𝐴 ≠ ∅ ) → ( ( { 𝐴 , 𝐵 } ≼ ω ∧ Disj 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ) → { 𝐴 , 𝐵 } ∈ 𝑆 ) )
66 19 37 65 mp2and ( ( 𝜑𝐴 ≠ ∅ ) → { 𝐴 , 𝐵 } ∈ 𝑆 )
67 16 66 eqeltrrd ( ( 𝜑𝐴 ≠ ∅ ) → ( 𝐴𝐵 ) ∈ 𝑆 )
68 13 67 pm2.61dane ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑆 )