Metamath Proof Explorer


Theorem sigaldsys

Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis isldsys.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
Assertion sigaldsys ( sigAlgebra ‘ 𝑂 ) ⊆ 𝐿

Proof

Step Hyp Ref Expression
1 isldsys.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
2 sigasspw ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ⊆ 𝒫 𝑂 )
3 velpw ( 𝑡 ∈ 𝒫 𝒫 𝑂𝑡 ⊆ 𝒫 𝑂 )
4 2 3 sylibr ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ∈ 𝒫 𝒫 𝑂 )
5 elrnsiga ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ran sigAlgebra )
6 0elsiga ( 𝑡 ran sigAlgebra → ∅ ∈ 𝑡 )
7 5 6 syl ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ∅ ∈ 𝑡 )
8 5 adantr ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥𝑡 ) → 𝑡 ran sigAlgebra )
9 baselsiga ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂𝑡 )
10 9 adantr ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥𝑡 ) → 𝑂𝑡 )
11 simpr ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥𝑡 ) → 𝑥𝑡 )
12 difelsiga ( ( 𝑡 ran sigAlgebra ∧ 𝑂𝑡𝑥𝑡 ) → ( 𝑂𝑥 ) ∈ 𝑡 )
13 8 10 11 12 syl3anc ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥𝑡 ) → ( 𝑂𝑥 ) ∈ 𝑡 )
14 13 ralrimiva ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 )
15 5 ad2antrr ( ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) → 𝑡 ran sigAlgebra )
16 simplr ( ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) → 𝑥 ∈ 𝒫 𝑡 )
17 simprl ( ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) → 𝑥 ≼ ω )
18 sigaclcu ( ( 𝑡 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡𝑥 ≼ ω ) → 𝑥𝑡 )
19 15 16 17 18 syl3anc ( ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) → 𝑥𝑡 )
20 19 ex ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) )
21 20 ralrimiva ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) )
22 7 14 21 3jca ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ( ∅ ∈ 𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) ) )
23 4 22 jca ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) ) ) )
24 1 isldsys ( 𝑡𝐿 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) ) ) )
25 23 24 sylibr ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡𝐿 )
26 25 ssriv ( sigAlgebra ‘ 𝑂 ) ⊆ 𝐿