| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isldsys.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
| 2 |
|
sigasspw |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ⊆ 𝒫 𝑂 ) |
| 3 |
|
velpw |
⊢ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ↔ 𝑡 ⊆ 𝒫 𝑂 ) |
| 4 |
2 3
|
sylibr |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ∈ 𝒫 𝒫 𝑂 ) |
| 5 |
|
elrnsiga |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ∈ ∪ ran sigAlgebra ) |
| 6 |
|
0elsiga |
⊢ ( 𝑡 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑡 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ∅ ∈ 𝑡 ) |
| 8 |
5
|
adantr |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝑡 ) → 𝑡 ∈ ∪ ran sigAlgebra ) |
| 9 |
|
baselsiga |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 ∈ 𝑡 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝑡 ) → 𝑂 ∈ 𝑡 ) |
| 11 |
|
simpr |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝑡 ) → 𝑥 ∈ 𝑡 ) |
| 12 |
|
difelsiga |
⊢ ( ( 𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑂 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
| 13 |
8 10 11 12
|
syl3anc |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝑡 ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
| 14 |
13
|
ralrimiva |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
| 15 |
5
|
ad2antrr |
⊢ ( ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → 𝑡 ∈ ∪ ran sigAlgebra ) |
| 16 |
|
simplr |
⊢ ( ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → 𝑥 ∈ 𝒫 𝑡 ) |
| 17 |
|
simprl |
⊢ ( ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → 𝑥 ≼ ω ) |
| 18 |
|
sigaclcu |
⊢ ( ( 𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡 ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑡 ) |
| 19 |
15 16 17 18
|
syl3anc |
⊢ ( ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ∪ 𝑥 ∈ 𝑡 ) |
| 20 |
19
|
ex |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) |
| 21 |
20
|
ralrimiva |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) |
| 22 |
7 14 21
|
3jca |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) |
| 23 |
4 22
|
jca |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
| 24 |
1
|
isldsys |
⊢ ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
| 25 |
23 24
|
sylibr |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ∈ 𝐿 ) |
| 26 |
25
|
ssriv |
⊢ ( sigAlgebra ‘ 𝑂 ) ⊆ 𝐿 |