| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isldsys.l | ⊢ 𝐿  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) ) } | 
						
							| 2 |  | sigasspw | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  𝑡  ⊆  𝒫  𝑂 ) | 
						
							| 3 |  | velpw | ⊢ ( 𝑡  ∈  𝒫  𝒫  𝑂  ↔  𝑡  ⊆  𝒫  𝑂 ) | 
						
							| 4 | 2 3 | sylibr | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  𝑡  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 5 |  | elrnsiga | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  𝑡  ∈  ∪  ran  sigAlgebra ) | 
						
							| 6 |  | 0elsiga | ⊢ ( 𝑡  ∈  ∪  ran  sigAlgebra  →  ∅  ∈  𝑡 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  ∅  ∈  𝑡 ) | 
						
							| 8 | 5 | adantr | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  𝑡 )  →  𝑡  ∈  ∪  ran  sigAlgebra ) | 
						
							| 9 |  | baselsiga | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  𝑂  ∈  𝑡 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  𝑡 )  →  𝑂  ∈  𝑡 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  𝑡 )  →  𝑥  ∈  𝑡 ) | 
						
							| 12 |  | difelsiga | ⊢ ( ( 𝑡  ∈  ∪  ran  sigAlgebra  ∧  𝑂  ∈  𝑡  ∧  𝑥  ∈  𝑡 )  →  ( 𝑂  ∖  𝑥 )  ∈  𝑡 ) | 
						
							| 13 | 8 10 11 12 | syl3anc | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  𝑡 )  →  ( 𝑂  ∖  𝑥 )  ∈  𝑡 ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡 ) | 
						
							| 15 | 5 | ad2antrr | ⊢ ( ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  𝒫  𝑡 )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  𝑡  ∈  ∪  ran  sigAlgebra ) | 
						
							| 16 |  | simplr | ⊢ ( ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  𝒫  𝑡 )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  𝑥  ∈  𝒫  𝑡 ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  𝒫  𝑡 )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  𝑥  ≼  ω ) | 
						
							| 18 |  | sigaclcu | ⊢ ( ( 𝑡  ∈  ∪  ran  sigAlgebra  ∧  𝑥  ∈  𝒫  𝑡  ∧  𝑥  ≼  ω )  →  ∪  𝑥  ∈  𝑡 ) | 
						
							| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  𝒫  𝑡 )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ∪  𝑥  ∈  𝑡 ) | 
						
							| 20 | 19 | ex | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  𝒫  𝑡 )  →  ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 ) ) | 
						
							| 21 | 20 | ralrimiva | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  ∀ 𝑥  ∈  𝒫  𝑡 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 ) ) | 
						
							| 22 | 7 14 21 | 3jca | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  ( ∅  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝒫  𝑡 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 ) ) ) | 
						
							| 23 | 4 22 | jca | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  ( 𝑡  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝒫  𝑡 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 ) ) ) ) | 
						
							| 24 | 1 | isldsys | ⊢ ( 𝑡  ∈  𝐿  ↔  ( 𝑡  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝒫  𝑡 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 ) ) ) ) | 
						
							| 25 | 23 24 | sylibr | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  𝑡  ∈  𝐿 ) | 
						
							| 26 | 25 | ssriv | ⊢ ( sigAlgebra ‘ 𝑂 )  ⊆  𝐿 |