Step |
Hyp |
Ref |
Expression |
1 |
|
isldsys.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
2 |
|
ldsysgenld.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
3 |
|
ldsysgenld.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝒫 𝑂 ) |
4 |
|
pwsiga |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → 𝒫 𝑂 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
6 |
1
|
sigaldsys |
⊢ ( sigAlgebra ‘ 𝑂 ) ⊆ 𝐿 |
7 |
6 5
|
sselid |
⊢ ( 𝜑 → 𝒫 𝑂 ∈ 𝐿 ) |
8 |
|
sseq2 |
⊢ ( 𝑡 = 𝒫 𝑂 → ( 𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝒫 𝑂 ) ) |
9 |
8
|
elrab |
⊢ ( 𝒫 𝑂 ∈ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ↔ ( 𝒫 𝑂 ∈ 𝐿 ∧ 𝐴 ⊆ 𝒫 𝑂 ) ) |
10 |
7 3 9
|
sylanbrc |
⊢ ( 𝜑 → 𝒫 𝑂 ∈ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) |
11 |
|
intss1 |
⊢ ( 𝒫 𝑂 ∈ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } → ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ⊆ 𝒫 𝑂 ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ⊆ 𝒫 𝑂 ) |
13 |
5 12
|
sselpwd |
⊢ ( 𝜑 → ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∈ 𝒫 𝒫 𝑂 ) |
14 |
1
|
isldsys |
⊢ ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
15 |
14
|
simprbi |
⊢ ( 𝑡 ∈ 𝐿 → ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) |
16 |
15
|
simp1d |
⊢ ( 𝑡 ∈ 𝐿 → ∅ ∈ 𝑡 ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ∅ ∈ 𝑡 ) |
18 |
17
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ( 𝐴 ⊆ 𝑡 → ∅ ∈ 𝑡 ) ) |
19 |
18
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → ∅ ∈ 𝑡 ) ) |
20 |
|
0ex |
⊢ ∅ ∈ V |
21 |
20
|
elintrab |
⊢ ( ∅ ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → ∅ ∈ 𝑡 ) ) |
22 |
19 21
|
sylibr |
⊢ ( 𝜑 → ∅ ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) |
23 |
|
nfv |
⊢ Ⅎ 𝑡 𝜑 |
24 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑥 |
25 |
|
nfrab1 |
⊢ Ⅎ 𝑡 { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } |
26 |
25
|
nfint |
⊢ Ⅎ 𝑡 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } |
27 |
24 26
|
nfel |
⊢ Ⅎ 𝑡 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } |
28 |
23 27
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) |
29 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → 𝑡 ∈ 𝐿 ) |
30 |
|
vex |
⊢ 𝑥 ∈ V |
31 |
30
|
elintrab |
⊢ ( 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡 ) ) |
32 |
31
|
biimpi |
⊢ ( 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } → ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡 ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡 ) ) |
34 |
33
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ 𝑡 ∈ 𝐿 ) → ( 𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡 ) ) |
35 |
34
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → 𝑥 ∈ 𝑡 ) |
36 |
15
|
simp2d |
⊢ ( 𝑡 ∈ 𝐿 → ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
37 |
36
|
r19.21bi |
⊢ ( ( 𝑡 ∈ 𝐿 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
38 |
29 35 37
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
39 |
38
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ 𝑡 ∈ 𝐿 ) → ( 𝐴 ⊆ 𝑡 → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) ) |
40 |
39
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → ( 𝑡 ∈ 𝐿 → ( 𝐴 ⊆ 𝑡 → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) ) ) |
41 |
28 40
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) ) |
42 |
|
difexg |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∖ 𝑥 ) ∈ V ) |
43 |
|
elintrabg |
⊢ ( ( 𝑂 ∖ 𝑥 ) ∈ V → ( ( 𝑂 ∖ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) ) ) |
44 |
2 42 43
|
3syl |
⊢ ( 𝜑 → ( ( 𝑂 ∖ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → ( ( 𝑂 ∖ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) ) ) |
46 |
41 45
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → ( 𝑂 ∖ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) |
47 |
46
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ( 𝑂 ∖ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) |
48 |
26
|
nfpw |
⊢ Ⅎ 𝑡 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } |
49 |
24 48
|
nfel |
⊢ Ⅎ 𝑡 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } |
50 |
23 49
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) |
51 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) |
52 |
50 51
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
53 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → 𝑡 ∈ 𝐿 ) |
54 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) ∧ 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) |
55 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) ∧ 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → 𝑡 ∈ 𝐿 ) |
56 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) ∧ 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → 𝐴 ⊆ 𝑡 ) |
57 |
|
vex |
⊢ 𝑢 ∈ V |
58 |
57
|
elintrab |
⊢ ( 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → 𝑢 ∈ 𝑡 ) ) |
59 |
58
|
biimpi |
⊢ ( 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } → ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → 𝑢 ∈ 𝑡 ) ) |
60 |
59
|
r19.21bi |
⊢ ( ( 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∧ 𝑡 ∈ 𝐿 ) → ( 𝐴 ⊆ 𝑡 → 𝑢 ∈ 𝑡 ) ) |
61 |
60
|
imp |
⊢ ( ( ( 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → 𝑢 ∈ 𝑡 ) |
62 |
54 55 56 61
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) ∧ 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → 𝑢 ∈ 𝑡 ) |
63 |
62
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → ( 𝑢 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } → 𝑢 ∈ 𝑡 ) ) |
64 |
63
|
ssrdv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ⊆ 𝑡 ) |
65 |
64
|
sspwd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ⊆ 𝒫 𝑡 ) |
66 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) |
67 |
65 66
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → 𝑥 ∈ 𝒫 𝑡 ) |
68 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
69 |
15
|
simp3d |
⊢ ( 𝑡 ∈ 𝐿 → ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) |
70 |
69
|
r19.21bi |
⊢ ( ( 𝑡 ∈ 𝐿 ∧ 𝑥 ∈ 𝒫 𝑡 ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) |
71 |
70
|
imp |
⊢ ( ( ( 𝑡 ∈ 𝐿 ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ∪ 𝑥 ∈ 𝑡 ) |
72 |
53 67 68 71
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝐴 ⊆ 𝑡 ) → ∪ 𝑥 ∈ 𝑡 ) |
73 |
72
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) → ( 𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡 ) ) |
74 |
73
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝑡 ∈ 𝐿 → ( 𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡 ) ) ) |
75 |
52 74
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡 ) ) |
76 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
77 |
76
|
elintrab |
⊢ ( ∪ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡 ) ) |
78 |
75 77
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ∪ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) |
79 |
78
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ) |
80 |
79
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ) |
81 |
22 47 80
|
3jca |
⊢ ( 𝜑 → ( ∅ ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∧ ∀ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ( 𝑂 ∖ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∧ ∀ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ) ) |
82 |
13 81
|
jca |
⊢ ( 𝜑 → ( ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∧ ∀ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ( 𝑂 ∖ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∧ ∀ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ) ) ) |
83 |
1
|
isldsys |
⊢ ( ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∈ 𝐿 ↔ ( ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∧ ∀ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ( 𝑂 ∖ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∧ ∀ 𝑥 ∈ 𝒫 ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ) ) ) ) |
84 |
82 83
|
sylibr |
⊢ ( 𝜑 → ∩ { 𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡 } ∈ 𝐿 ) |