Metamath Proof Explorer


Theorem ldsysgenld

Description: The intersection of all lambda-systems containing a given collection of sets A , which is called the lambda-system generated by A , is itself also a lambda-system. (Contributed by Thierry Arnoux, 16-Jun-2020)

Ref Expression
Hypotheses isldsys.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
ldsysgenld.1 φOV
ldsysgenld.2 φA𝒫O
Assertion ldsysgenld φtL|AtL

Proof

Step Hyp Ref Expression
1 isldsys.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
2 ldsysgenld.1 φOV
3 ldsysgenld.2 φA𝒫O
4 pwsiga OV𝒫OsigAlgebraO
5 2 4 syl φ𝒫OsigAlgebraO
6 1 sigaldsys sigAlgebraOL
7 6 5 sselid φ𝒫OL
8 sseq2 t=𝒫OAtA𝒫O
9 8 elrab 𝒫OtL|At𝒫OLA𝒫O
10 7 3 9 sylanbrc φ𝒫OtL|At
11 intss1 𝒫OtL|AttL|At𝒫O
12 10 11 syl φtL|At𝒫O
13 5 12 sselpwd φtL|At𝒫𝒫O
14 1 isldsys tLt𝒫𝒫OtxtOxtx𝒫txωDisjyxyxt
15 14 simprbi tLtxtOxtx𝒫txωDisjyxyxt
16 15 simp1d tLt
17 16 adantl φtLt
18 17 a1d φtLAtt
19 18 ralrimiva φtLAtt
20 0ex V
21 20 elintrab tL|AttLAtt
22 19 21 sylibr φtL|At
23 nfv tφ
24 nfcv _tx
25 nfrab1 _ttL|At
26 25 nfint _ttL|At
27 24 26 nfel txtL|At
28 23 27 nfan tφxtL|At
29 simplr φxtL|AttLAttL
30 vex xV
31 30 elintrab xtL|AttLAtxt
32 31 biimpi xtL|AttLAtxt
33 32 adantl φxtL|AttLAtxt
34 33 r19.21bi φxtL|AttLAtxt
35 34 imp φxtL|AttLAtxt
36 15 simp2d tLxtOxt
37 36 r19.21bi tLxtOxt
38 29 35 37 syl2anc φxtL|AttLAtOxt
39 38 ex φxtL|AttLAtOxt
40 39 ex φxtL|AttLAtOxt
41 28 40 ralrimi φxtL|AttLAtOxt
42 difexg OVOxV
43 elintrabg OxVOxtL|AttLAtOxt
44 2 42 43 3syl φOxtL|AttLAtOxt
45 44 adantr φxtL|AtOxtL|AttLAtOxt
46 41 45 mpbird φxtL|AtOxtL|At
47 46 ralrimiva φxtL|AtOxtL|At
48 26 nfpw _t𝒫tL|At
49 24 48 nfel tx𝒫tL|At
50 23 49 nfan tφx𝒫tL|At
51 nfv txωDisjyxy
52 50 51 nfan tφx𝒫tL|AtxωDisjyxy
53 simplr φx𝒫tL|AtxωDisjyxytLAttL
54 simpr φx𝒫tL|AtxωDisjyxytLAtutL|AtutL|At
55 simpllr φx𝒫tL|AtxωDisjyxytLAtutL|AttL
56 simplr φx𝒫tL|AtxωDisjyxytLAtutL|AtAt
57 vex uV
58 57 elintrab utL|AttLAtut
59 58 biimpi utL|AttLAtut
60 59 r19.21bi utL|AttLAtut
61 60 imp utL|AttLAtut
62 54 55 56 61 syl21anc φx𝒫tL|AtxωDisjyxytLAtutL|Atut
63 62 ex φx𝒫tL|AtxωDisjyxytLAtutL|Atut
64 63 ssrdv φx𝒫tL|AtxωDisjyxytLAttL|Att
65 64 sspwd φx𝒫tL|AtxωDisjyxytLAt𝒫tL|At𝒫t
66 simp-4r φx𝒫tL|AtxωDisjyxytLAtx𝒫tL|At
67 65 66 sseldd φx𝒫tL|AtxωDisjyxytLAtx𝒫t
68 simpllr φx𝒫tL|AtxωDisjyxytLAtxωDisjyxy
69 15 simp3d tLx𝒫txωDisjyxyxt
70 69 r19.21bi tLx𝒫txωDisjyxyxt
71 70 imp tLx𝒫txωDisjyxyxt
72 53 67 68 71 syl21anc φx𝒫tL|AtxωDisjyxytLAtxt
73 72 ex φx𝒫tL|AtxωDisjyxytLAtxt
74 73 ex φx𝒫tL|AtxωDisjyxytLAtxt
75 52 74 ralrimi φx𝒫tL|AtxωDisjyxytLAtxt
76 vuniex xV
77 76 elintrab xtL|AttLAtxt
78 75 77 sylibr φx𝒫tL|AtxωDisjyxyxtL|At
79 78 ex φx𝒫tL|AtxωDisjyxyxtL|At
80 79 ralrimiva φx𝒫tL|AtxωDisjyxyxtL|At
81 22 47 80 3jca φtL|AtxtL|AtOxtL|Atx𝒫tL|AtxωDisjyxyxtL|At
82 13 81 jca φtL|At𝒫𝒫OtL|AtxtL|AtOxtL|Atx𝒫tL|AtxωDisjyxyxtL|At
83 1 isldsys tL|AtLtL|At𝒫𝒫OtL|AtxtL|AtOxtL|Atx𝒫tL|AtxωDisjyxyxtL|At
84 82 83 sylibr φtL|AtL