Metamath Proof Explorer


Theorem ldsysgenld

Description: The intersection of all lambda-systems containing a given collection of sets A , which is called the lambda-system generated by A , is itself also a lambda-system. (Contributed by Thierry Arnoux, 16-Jun-2020)

Ref Expression
Hypotheses isldsys.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
ldsysgenld.1 φ O V
ldsysgenld.2 φ A 𝒫 O
Assertion ldsysgenld φ t L | A t L

Proof

Step Hyp Ref Expression
1 isldsys.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
2 ldsysgenld.1 φ O V
3 ldsysgenld.2 φ A 𝒫 O
4 pwsiga O V 𝒫 O sigAlgebra O
5 2 4 syl φ 𝒫 O sigAlgebra O
6 1 sigaldsys sigAlgebra O L
7 6 5 sselid φ 𝒫 O L
8 sseq2 t = 𝒫 O A t A 𝒫 O
9 8 elrab 𝒫 O t L | A t 𝒫 O L A 𝒫 O
10 7 3 9 sylanbrc φ 𝒫 O t L | A t
11 intss1 𝒫 O t L | A t t L | A t 𝒫 O
12 10 11 syl φ t L | A t 𝒫 O
13 5 12 sselpwd φ t L | A t 𝒫 𝒫 O
14 1 isldsys t L t 𝒫 𝒫 O t x t O x t x 𝒫 t x ω Disj y x y x t
15 14 simprbi t L t x t O x t x 𝒫 t x ω Disj y x y x t
16 15 simp1d t L t
17 16 adantl φ t L t
18 17 a1d φ t L A t t
19 18 ralrimiva φ t L A t t
20 0ex V
21 20 elintrab t L | A t t L A t t
22 19 21 sylibr φ t L | A t
23 nfv t φ
24 nfcv _ t x
25 nfrab1 _ t t L | A t
26 25 nfint _ t t L | A t
27 24 26 nfel t x t L | A t
28 23 27 nfan t φ x t L | A t
29 simplr φ x t L | A t t L A t t L
30 vex x V
31 30 elintrab x t L | A t t L A t x t
32 31 biimpi x t L | A t t L A t x t
33 32 adantl φ x t L | A t t L A t x t
34 33 r19.21bi φ x t L | A t t L A t x t
35 34 imp φ x t L | A t t L A t x t
36 15 simp2d t L x t O x t
37 36 r19.21bi t L x t O x t
38 29 35 37 syl2anc φ x t L | A t t L A t O x t
39 38 ex φ x t L | A t t L A t O x t
40 39 ex φ x t L | A t t L A t O x t
41 28 40 ralrimi φ x t L | A t t L A t O x t
42 difexg O V O x V
43 elintrabg O x V O x t L | A t t L A t O x t
44 2 42 43 3syl φ O x t L | A t t L A t O x t
45 44 adantr φ x t L | A t O x t L | A t t L A t O x t
46 41 45 mpbird φ x t L | A t O x t L | A t
47 46 ralrimiva φ x t L | A t O x t L | A t
48 26 nfpw _ t 𝒫 t L | A t
49 24 48 nfel t x 𝒫 t L | A t
50 23 49 nfan t φ x 𝒫 t L | A t
51 nfv t x ω Disj y x y
52 50 51 nfan t φ x 𝒫 t L | A t x ω Disj y x y
53 simplr φ x 𝒫 t L | A t x ω Disj y x y t L A t t L
54 simpr φ x 𝒫 t L | A t x ω Disj y x y t L A t u t L | A t u t L | A t
55 simpllr φ x 𝒫 t L | A t x ω Disj y x y t L A t u t L | A t t L
56 simplr φ x 𝒫 t L | A t x ω Disj y x y t L A t u t L | A t A t
57 vex u V
58 57 elintrab u t L | A t t L A t u t
59 58 biimpi u t L | A t t L A t u t
60 59 r19.21bi u t L | A t t L A t u t
61 60 imp u t L | A t t L A t u t
62 54 55 56 61 syl21anc φ x 𝒫 t L | A t x ω Disj y x y t L A t u t L | A t u t
63 62 ex φ x 𝒫 t L | A t x ω Disj y x y t L A t u t L | A t u t
64 63 ssrdv φ x 𝒫 t L | A t x ω Disj y x y t L A t t L | A t t
65 64 sspwd φ x 𝒫 t L | A t x ω Disj y x y t L A t 𝒫 t L | A t 𝒫 t
66 simp-4r φ x 𝒫 t L | A t x ω Disj y x y t L A t x 𝒫 t L | A t
67 65 66 sseldd φ x 𝒫 t L | A t x ω Disj y x y t L A t x 𝒫 t
68 simpllr φ x 𝒫 t L | A t x ω Disj y x y t L A t x ω Disj y x y
69 15 simp3d t L x 𝒫 t x ω Disj y x y x t
70 69 r19.21bi t L x 𝒫 t x ω Disj y x y x t
71 70 imp t L x 𝒫 t x ω Disj y x y x t
72 53 67 68 71 syl21anc φ x 𝒫 t L | A t x ω Disj y x y t L A t x t
73 72 ex φ x 𝒫 t L | A t x ω Disj y x y t L A t x t
74 73 ex φ x 𝒫 t L | A t x ω Disj y x y t L A t x t
75 52 74 ralrimi φ x 𝒫 t L | A t x ω Disj y x y t L A t x t
76 vuniex x V
77 76 elintrab x t L | A t t L A t x t
78 75 77 sylibr φ x 𝒫 t L | A t x ω Disj y x y x t L | A t
79 78 ex φ x 𝒫 t L | A t x ω Disj y x y x t L | A t
80 79 ralrimiva φ x 𝒫 t L | A t x ω Disj y x y x t L | A t
81 22 47 80 3jca φ t L | A t x t L | A t O x t L | A t x 𝒫 t L | A t x ω Disj y x y x t L | A t
82 13 81 jca φ t L | A t 𝒫 𝒫 O t L | A t x t L | A t O x t L | A t x 𝒫 t L | A t x ω Disj y x y x t L | A t
83 1 isldsys t L | A t L t L | A t 𝒫 𝒫 O t L | A t x t L | A t O x t L | A t x 𝒫 t L | A t x ω Disj y x y x t L | A t
84 82 83 sylibr φ t L | A t L