| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dynkin.p |
|
| 2 |
|
dynkin.l |
|
| 3 |
|
sigapildsyslem.n |
|
| 4 |
|
sigapildsyslem.1 |
|
| 5 |
|
sigapildsyslem.2 |
|
| 6 |
|
sigapildsyslem.3 |
|
| 7 |
|
sigapildsyslem.4 |
|
| 8 |
|
iuneq1 |
|
| 9 |
|
0iun |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
10
|
difeq2d |
|
| 12 |
|
dif0 |
|
| 13 |
11 12
|
eqtrdi |
|
| 14 |
13
|
adantl |
|
| 15 |
5
|
adantr |
|
| 16 |
14 15
|
eqeltrd |
|
| 17 |
|
iindif2 |
|
| 18 |
17
|
adantl |
|
| 19 |
4
|
adantr |
|
| 20 |
19
|
elin1d |
|
| 21 |
1
|
ispisys |
|
| 22 |
20 21
|
sylib |
|
| 23 |
22
|
simprd |
|
| 24 |
|
nfv |
|
| 25 |
3 24
|
nfan |
|
| 26 |
22
|
simpld |
|
| 27 |
26
|
elpwid |
|
| 28 |
5
|
adantr |
|
| 29 |
27 28
|
sseldd |
|
| 30 |
29
|
elpwid |
|
| 31 |
30
|
adantr |
|
| 32 |
|
difin2 |
|
| 33 |
31 32
|
syl |
|
| 34 |
23
|
adantr |
|
| 35 |
19
|
adantr |
|
| 36 |
19
|
elin2d |
|
| 37 |
2
|
isldsys |
|
| 38 |
36 37
|
sylib |
|
| 39 |
38
|
simprd |
|
| 40 |
39
|
simp2d |
|
| 41 |
40
|
adantr |
|
| 42 |
7
|
adantlr |
|
| 43 |
|
nfv |
|
| 44 |
|
difeq2 |
|
| 45 |
44
|
eleq1d |
|
| 46 |
43 45
|
rspc |
|
| 47 |
42 46
|
syl |
|
| 48 |
41 47
|
mpd |
|
| 49 |
28
|
adantr |
|
| 50 |
|
inelfi |
|
| 51 |
35 48 49 50
|
syl3anc |
|
| 52 |
34 51
|
sseldd |
|
| 53 |
33 52
|
eqeltrd |
|
| 54 |
53
|
ex |
|
| 55 |
25 54
|
ralrimi |
|
| 56 |
|
simpr |
|
| 57 |
6
|
adantr |
|
| 58 |
|
vex |
|
| 59 |
|
iinfi |
|
| 60 |
58 59
|
mpan |
|
| 61 |
55 56 57 60
|
syl3anc |
|
| 62 |
23 61
|
sseldd |
|
| 63 |
18 62
|
eqeltrrd |
|
| 64 |
16 63
|
pm2.61dane |
|