Step |
Hyp |
Ref |
Expression |
1 |
|
dynkin.p |
|
2 |
|
dynkin.l |
|
3 |
|
sigapildsyslem.n |
|
4 |
|
sigapildsyslem.1 |
|
5 |
|
sigapildsyslem.2 |
|
6 |
|
sigapildsyslem.3 |
|
7 |
|
sigapildsyslem.4 |
|
8 |
|
iuneq1 |
|
9 |
|
0iun |
|
10 |
8 9
|
eqtrdi |
|
11 |
10
|
difeq2d |
|
12 |
|
dif0 |
|
13 |
11 12
|
eqtrdi |
|
14 |
13
|
adantl |
|
15 |
5
|
adantr |
|
16 |
14 15
|
eqeltrd |
|
17 |
|
iindif2 |
|
18 |
17
|
adantl |
|
19 |
4
|
adantr |
|
20 |
19
|
elin1d |
|
21 |
1
|
ispisys |
|
22 |
20 21
|
sylib |
|
23 |
22
|
simprd |
|
24 |
|
nfv |
|
25 |
3 24
|
nfan |
|
26 |
22
|
simpld |
|
27 |
26
|
elpwid |
|
28 |
5
|
adantr |
|
29 |
27 28
|
sseldd |
|
30 |
29
|
elpwid |
|
31 |
30
|
adantr |
|
32 |
|
difin2 |
|
33 |
31 32
|
syl |
|
34 |
23
|
adantr |
|
35 |
19
|
adantr |
|
36 |
19
|
elin2d |
|
37 |
2
|
isldsys |
|
38 |
36 37
|
sylib |
|
39 |
38
|
simprd |
|
40 |
39
|
simp2d |
|
41 |
40
|
adantr |
|
42 |
7
|
adantlr |
|
43 |
|
nfv |
|
44 |
|
difeq2 |
|
45 |
44
|
eleq1d |
|
46 |
43 45
|
rspc |
|
47 |
42 46
|
syl |
|
48 |
41 47
|
mpd |
|
49 |
28
|
adantr |
|
50 |
|
inelfi |
|
51 |
35 48 49 50
|
syl3anc |
|
52 |
34 51
|
sseldd |
|
53 |
33 52
|
eqeltrd |
|
54 |
53
|
ex |
|
55 |
25 54
|
ralrimi |
|
56 |
|
simpr |
|
57 |
6
|
adantr |
|
58 |
|
vex |
|
59 |
|
iinfi |
|
60 |
58 59
|
mpan |
|
61 |
55 56 57 60
|
syl3anc |
|
62 |
23 61
|
sseldd |
|
63 |
18 62
|
eqeltrrd |
|
64 |
16 63
|
pm2.61dane |
|