| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dynkin.p |
⊢ 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 } |
| 2 |
|
dynkin.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
| 3 |
|
sigapildsyslem.n |
⊢ Ⅎ 𝑛 𝜑 |
| 4 |
|
sigapildsyslem.1 |
⊢ ( 𝜑 → 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ) |
| 5 |
|
sigapildsyslem.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑡 ) |
| 6 |
|
sigapildsyslem.3 |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 7 |
|
sigapildsyslem.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → 𝐵 ∈ 𝑡 ) |
| 8 |
|
iuneq1 |
⊢ ( 𝑁 = ∅ → ∪ 𝑛 ∈ 𝑁 𝐵 = ∪ 𝑛 ∈ ∅ 𝐵 ) |
| 9 |
|
0iun |
⊢ ∪ 𝑛 ∈ ∅ 𝐵 = ∅ |
| 10 |
8 9
|
eqtrdi |
⊢ ( 𝑁 = ∅ → ∪ 𝑛 ∈ 𝑁 𝐵 = ∅ ) |
| 11 |
10
|
difeq2d |
⊢ ( 𝑁 = ∅ → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑁 𝐵 ) = ( 𝐴 ∖ ∅ ) ) |
| 12 |
|
dif0 |
⊢ ( 𝐴 ∖ ∅ ) = 𝐴 |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝑁 = ∅ → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑁 𝐵 ) = 𝐴 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 = ∅ ) → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑁 𝐵 ) = 𝐴 ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ∅ ) → 𝐴 ∈ 𝑡 ) |
| 16 |
14 15
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑁 = ∅ ) → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑁 𝐵 ) ∈ 𝑡 ) |
| 17 |
|
iindif2 |
⊢ ( 𝑁 ≠ ∅ → ∩ 𝑛 ∈ 𝑁 ( 𝐴 ∖ 𝐵 ) = ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑁 𝐵 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ∩ 𝑛 ∈ 𝑁 ( 𝐴 ∖ 𝐵 ) = ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑁 𝐵 ) ) |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ) |
| 20 |
19
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝑡 ∈ 𝑃 ) |
| 21 |
1
|
ispisys |
⊢ ( 𝑡 ∈ 𝑃 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑡 ) ⊆ 𝑡 ) ) |
| 22 |
20 21
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑡 ) ⊆ 𝑡 ) ) |
| 23 |
22
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ( fi ‘ 𝑡 ) ⊆ 𝑡 ) |
| 24 |
|
nfv |
⊢ Ⅎ 𝑛 𝑁 ≠ ∅ |
| 25 |
3 24
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑁 ≠ ∅ ) |
| 26 |
22
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝑡 ∈ 𝒫 𝒫 𝑂 ) |
| 27 |
26
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝑡 ⊆ 𝒫 𝑂 ) |
| 28 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝐴 ∈ 𝑡 ) |
| 29 |
27 28
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝐴 ∈ 𝒫 𝑂 ) |
| 30 |
29
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝐴 ⊆ 𝑂 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → 𝐴 ⊆ 𝑂 ) |
| 32 |
|
difin2 |
⊢ ( 𝐴 ⊆ 𝑂 → ( 𝐴 ∖ 𝐵 ) = ( ( 𝑂 ∖ 𝐵 ) ∩ 𝐴 ) ) |
| 33 |
31 32
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → ( 𝐴 ∖ 𝐵 ) = ( ( 𝑂 ∖ 𝐵 ) ∩ 𝐴 ) ) |
| 34 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → ( fi ‘ 𝑡 ) ⊆ 𝑡 ) |
| 35 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ) |
| 36 |
19
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝑡 ∈ 𝐿 ) |
| 37 |
2
|
isldsys |
⊢ ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
| 38 |
36 37
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
| 39 |
38
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) |
| 40 |
39
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
| 42 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → 𝐵 ∈ 𝑡 ) |
| 43 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑂 ∖ 𝐵 ) ∈ 𝑡 |
| 44 |
|
difeq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑂 ∖ 𝑥 ) = ( 𝑂 ∖ 𝐵 ) ) |
| 45 |
44
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ↔ ( 𝑂 ∖ 𝐵 ) ∈ 𝑡 ) ) |
| 46 |
43 45
|
rspc |
⊢ ( 𝐵 ∈ 𝑡 → ( ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 → ( 𝑂 ∖ 𝐵 ) ∈ 𝑡 ) ) |
| 47 |
42 46
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → ( ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 → ( 𝑂 ∖ 𝐵 ) ∈ 𝑡 ) ) |
| 48 |
41 47
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → ( 𝑂 ∖ 𝐵 ) ∈ 𝑡 ) |
| 49 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → 𝐴 ∈ 𝑡 ) |
| 50 |
|
inelfi |
⊢ ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ ( 𝑂 ∖ 𝐵 ) ∈ 𝑡 ∧ 𝐴 ∈ 𝑡 ) → ( ( 𝑂 ∖ 𝐵 ) ∩ 𝐴 ) ∈ ( fi ‘ 𝑡 ) ) |
| 51 |
35 48 49 50
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑂 ∖ 𝐵 ) ∩ 𝐴 ) ∈ ( fi ‘ 𝑡 ) ) |
| 52 |
34 51
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑂 ∖ 𝐵 ) ∩ 𝐴 ) ∈ 𝑡 ) |
| 53 |
33 52
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) ∧ 𝑛 ∈ 𝑁 ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝑡 ) |
| 54 |
53
|
ex |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ( 𝑛 ∈ 𝑁 → ( 𝐴 ∖ 𝐵 ) ∈ 𝑡 ) ) |
| 55 |
25 54
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ∀ 𝑛 ∈ 𝑁 ( 𝐴 ∖ 𝐵 ) ∈ 𝑡 ) |
| 56 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝑁 ≠ ∅ ) |
| 57 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → 𝑁 ∈ Fin ) |
| 58 |
|
vex |
⊢ 𝑡 ∈ V |
| 59 |
|
iinfi |
⊢ ( ( 𝑡 ∈ V ∧ ( ∀ 𝑛 ∈ 𝑁 ( 𝐴 ∖ 𝐵 ) ∈ 𝑡 ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin ) ) → ∩ 𝑛 ∈ 𝑁 ( 𝐴 ∖ 𝐵 ) ∈ ( fi ‘ 𝑡 ) ) |
| 60 |
58 59
|
mpan |
⊢ ( ( ∀ 𝑛 ∈ 𝑁 ( 𝐴 ∖ 𝐵 ) ∈ 𝑡 ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin ) → ∩ 𝑛 ∈ 𝑁 ( 𝐴 ∖ 𝐵 ) ∈ ( fi ‘ 𝑡 ) ) |
| 61 |
55 56 57 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ∩ 𝑛 ∈ 𝑁 ( 𝐴 ∖ 𝐵 ) ∈ ( fi ‘ 𝑡 ) ) |
| 62 |
23 61
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ∩ 𝑛 ∈ 𝑁 ( 𝐴 ∖ 𝐵 ) ∈ 𝑡 ) |
| 63 |
18 62
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑁 ≠ ∅ ) → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑁 𝐵 ) ∈ 𝑡 ) |
| 64 |
16 63
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑁 𝐵 ) ∈ 𝑡 ) |