Metamath Proof Explorer


Theorem inelfi

Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017)

Ref Expression
Assertion inelfi ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐵 ) ∈ ( fi ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 prelpwi ( ( 𝐴𝑋𝐵𝑋 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑋 )
2 1 3adant1 ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑋 )
3 prfi { 𝐴 , 𝐵 } ∈ Fin
4 3 a1i ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → { 𝐴 , 𝐵 } ∈ Fin )
5 2 4 elind ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → { 𝐴 , 𝐵 } ∈ ( 𝒫 𝑋 ∩ Fin ) )
6 intprg ( ( 𝐴𝑋𝐵𝑋 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
7 6 3adant1 ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
8 7 eqcomd ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐵 ) = { 𝐴 , 𝐵 } )
9 inteq ( 𝑝 = { 𝐴 , 𝐵 } → 𝑝 = { 𝐴 , 𝐵 } )
10 9 rspceeqv ( ( { 𝐴 , 𝐵 } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ( 𝐴𝐵 ) = { 𝐴 , 𝐵 } ) → ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴𝐵 ) = 𝑝 )
11 5 8 10 syl2anc ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴𝐵 ) = 𝑝 )
12 inex1g ( 𝐴𝑋 → ( 𝐴𝐵 ) ∈ V )
13 12 3ad2ant2 ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐵 ) ∈ V )
14 simp1 ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → 𝑋𝑉 )
15 elfi ( ( ( 𝐴𝐵 ) ∈ V ∧ 𝑋𝑉 ) → ( ( 𝐴𝐵 ) ∈ ( fi ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴𝐵 ) = 𝑝 ) )
16 13 14 15 syl2anc ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ( ( 𝐴𝐵 ) ∈ ( fi ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴𝐵 ) = 𝑝 ) )
17 11 16 mpbird ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐵 ) ∈ ( fi ‘ 𝑋 ) )