Step |
Hyp |
Ref |
Expression |
1 |
|
dynkin.p |
⊢ 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 } |
2 |
|
dynkin.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
3 |
1
|
sigapisys |
⊢ ( sigAlgebra ‘ 𝑂 ) ⊆ 𝑃 |
4 |
2
|
sigaldsys |
⊢ ( sigAlgebra ‘ 𝑂 ) ⊆ 𝐿 |
5 |
3 4
|
ssini |
⊢ ( sigAlgebra ‘ 𝑂 ) ⊆ ( 𝑃 ∩ 𝐿 ) |
6 |
|
id |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ) |
7 |
6
|
elin1d |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → 𝑡 ∈ 𝑃 ) |
8 |
1
|
ispisys |
⊢ ( 𝑡 ∈ 𝑃 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑡 ) ⊆ 𝑡 ) ) |
9 |
7 8
|
sylib |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑡 ) ⊆ 𝑡 ) ) |
10 |
9
|
simpld |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → 𝑡 ∈ 𝒫 𝒫 𝑂 ) |
11 |
10
|
elpwid |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → 𝑡 ⊆ 𝒫 𝑂 ) |
12 |
|
dif0 |
⊢ ( 𝑂 ∖ ∅ ) = 𝑂 |
13 |
6
|
elin2d |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → 𝑡 ∈ 𝐿 ) |
14 |
2
|
isldsys |
⊢ ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
15 |
13 14
|
sylib |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
16 |
15
|
simprd |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) |
17 |
16
|
simp2d |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
18 |
16
|
simp1d |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ∅ ∈ 𝑡 ) |
19 |
|
difeq2 |
⊢ ( 𝑥 = ∅ → ( 𝑂 ∖ 𝑥 ) = ( 𝑂 ∖ ∅ ) ) |
20 |
|
eqidd |
⊢ ( 𝑥 = ∅ → 𝑡 = 𝑡 ) |
21 |
19 20
|
eleq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ↔ ( 𝑂 ∖ ∅ ) ∈ 𝑡 ) ) |
22 |
21
|
rspcv |
⊢ ( ∅ ∈ 𝑡 → ( ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 → ( 𝑂 ∖ ∅ ) ∈ 𝑡 ) ) |
23 |
18 22
|
syl |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ( ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 → ( 𝑂 ∖ ∅ ) ∈ 𝑡 ) ) |
24 |
17 23
|
mpd |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ( 𝑂 ∖ ∅ ) ∈ 𝑡 ) |
25 |
12 24
|
eqeltrrid |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → 𝑂 ∈ 𝑡 ) |
26 |
|
unieq |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) |
27 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
28 |
26 27
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∅ ) |
29 |
28
|
adantl |
⊢ ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 = ∅ ) → ∪ 𝑥 = ∅ ) |
30 |
18
|
ad3antrrr |
⊢ ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 = ∅ ) → ∅ ∈ 𝑡 ) |
31 |
29 30
|
eqeltrd |
⊢ ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 = ∅ ) → ∪ 𝑥 ∈ 𝑡 ) |
32 |
|
vex |
⊢ 𝑥 ∈ V |
33 |
32
|
0sdom |
⊢ ( ∅ ≺ 𝑥 ↔ 𝑥 ≠ ∅ ) |
34 |
33
|
biimpri |
⊢ ( 𝑥 ≠ ∅ → ∅ ≺ 𝑥 ) |
35 |
34
|
adantl |
⊢ ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → ∅ ≺ 𝑥 ) |
36 |
|
simplr |
⊢ ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ≼ ω ) |
37 |
|
nnenom |
⊢ ℕ ≈ ω |
38 |
37
|
ensymi |
⊢ ω ≈ ℕ |
39 |
|
domentr |
⊢ ( ( 𝑥 ≼ ω ∧ ω ≈ ℕ ) → 𝑥 ≼ ℕ ) |
40 |
36 38 39
|
sylancl |
⊢ ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ≼ ℕ ) |
41 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝑥 ∧ 𝑥 ≼ ℕ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝑥 ) |
42 |
35 40 41
|
syl2anc |
⊢ ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝑥 ) |
43 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑖 ) ) |
44 |
43
|
iundisj |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) |
45 |
|
fofn |
⊢ ( 𝑓 : ℕ –onto→ 𝑥 → 𝑓 Fn ℕ ) |
46 |
|
fniunfv |
⊢ ( 𝑓 Fn ℕ → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ ran 𝑓 ) |
47 |
45 46
|
syl |
⊢ ( 𝑓 : ℕ –onto→ 𝑥 → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ ran 𝑓 ) |
48 |
|
forn |
⊢ ( 𝑓 : ℕ –onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
49 |
48
|
unieqd |
⊢ ( 𝑓 : ℕ –onto→ 𝑥 → ∪ ran 𝑓 = ∪ 𝑥 ) |
50 |
47 49
|
eqtrd |
⊢ ( 𝑓 : ℕ –onto→ 𝑥 → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ 𝑥 ) |
51 |
44 50
|
eqtr3id |
⊢ ( 𝑓 : ℕ –onto→ 𝑥 → ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) = ∪ 𝑥 ) |
52 |
51
|
adantl |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) = ∪ 𝑥 ) |
53 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑛 ) ∈ V |
54 |
|
difexg |
⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ V → ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ∈ V ) |
55 |
53 54
|
ax-mp |
⊢ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ∈ V |
56 |
55
|
dfiun3 |
⊢ ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) = ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
57 |
|
nfv |
⊢ Ⅎ 𝑛 ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) |
58 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑦 |
59 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
60 |
59
|
nfrn |
⊢ Ⅎ 𝑛 ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
61 |
58 60
|
nfel |
⊢ Ⅎ 𝑛 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
62 |
57 61
|
nfan |
⊢ Ⅎ 𝑛 ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) |
63 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
64 |
|
nfv |
⊢ Ⅎ 𝑖 ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) |
65 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑦 |
66 |
|
nfcv |
⊢ Ⅎ 𝑖 ℕ |
67 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑓 ‘ 𝑛 ) |
68 |
|
nfiu1 |
⊢ Ⅎ 𝑖 ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) |
69 |
67 68
|
nfdif |
⊢ Ⅎ 𝑖 ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) |
70 |
66 69
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
71 |
70
|
nfrn |
⊢ Ⅎ 𝑖 ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
72 |
65 71
|
nfel |
⊢ Ⅎ 𝑖 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
73 |
64 72
|
nfan |
⊢ Ⅎ 𝑖 ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) |
74 |
|
nfv |
⊢ Ⅎ 𝑖 𝑛 ∈ ℕ |
75 |
73 74
|
nfan |
⊢ Ⅎ 𝑖 ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) |
76 |
65 69
|
nfeq |
⊢ Ⅎ 𝑖 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) |
77 |
75 76
|
nfan |
⊢ Ⅎ 𝑖 ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
78 |
6
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ) |
79 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → 𝑥 ∈ 𝒫 𝑡 ) |
80 |
79
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → 𝑥 ∈ 𝒫 𝑡 ) |
81 |
80
|
elpwid |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → 𝑥 ⊆ 𝑡 ) |
82 |
|
fof |
⊢ ( 𝑓 : ℕ –onto→ 𝑥 → 𝑓 : ℕ ⟶ 𝑥 ) |
83 |
82
|
ad4antlr |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → 𝑓 : ℕ ⟶ 𝑥 ) |
84 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → 𝑛 ∈ ℕ ) |
85 |
83 84
|
ffvelrnd |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝑥 ) |
86 |
81 85
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝑡 ) |
87 |
|
fzofi |
⊢ ( 1 ..^ 𝑛 ) ∈ Fin |
88 |
87
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( 1 ..^ 𝑛 ) ∈ Fin ) |
89 |
81
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → 𝑥 ⊆ 𝑡 ) |
90 |
83
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → 𝑓 : ℕ ⟶ 𝑥 ) |
91 |
|
fzossnn |
⊢ ( 1 ..^ 𝑛 ) ⊆ ℕ |
92 |
91
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( 1 ..^ 𝑛 ) ⊆ ℕ ) |
93 |
92
|
sselda |
⊢ ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → 𝑖 ∈ ℕ ) |
94 |
90 93
|
ffvelrnd |
⊢ ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → ( 𝑓 ‘ 𝑖 ) ∈ 𝑥 ) |
95 |
89 94
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → ( 𝑓 ‘ 𝑖 ) ∈ 𝑡 ) |
96 |
1 2 77 78 86 88 95
|
sigapildsyslem |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ∈ 𝑡 ) |
97 |
63 96
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → 𝑦 ∈ 𝑡 ) |
98 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) → 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) |
99 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
100 |
99 55
|
elrnmpti |
⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
101 |
98 100
|
sylib |
⊢ ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) |
102 |
62 97 101
|
r19.29af |
⊢ ( ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) → 𝑦 ∈ 𝑡 ) |
103 |
102
|
ex |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → ( 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → 𝑦 ∈ 𝑡 ) ) |
104 |
103
|
ssrdv |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ⊆ 𝑡 ) |
105 |
|
nnex |
⊢ ℕ ∈ V |
106 |
105
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ V |
107 |
106
|
rnex |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ V |
108 |
|
elpwg |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ V → ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝒫 𝑡 ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ⊆ 𝑡 ) ) |
109 |
107 108
|
ax-mp |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝒫 𝑡 ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ⊆ 𝑡 ) |
110 |
104 109
|
sylibr |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝒫 𝑡 ) |
111 |
16
|
simp3d |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) |
112 |
111
|
ad4antr |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) |
113 |
|
nnct |
⊢ ℕ ≼ ω |
114 |
|
mptct |
⊢ ( ℕ ≼ ω → ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω ) |
115 |
113 114
|
ax-mp |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω |
116 |
|
rnct |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω ) |
117 |
115 116
|
mp1i |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω ) |
118 |
43
|
iundisj2 |
⊢ Disj 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) |
119 |
|
disjrnmpt |
⊢ ( Disj 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) → Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) 𝑦 ) |
120 |
118 119
|
mp1i |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) 𝑦 ) |
121 |
|
breq1 |
⊢ ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( 𝑥 ≼ ω ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω ) ) |
122 |
|
disjeq1 |
⊢ ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) 𝑦 ) ) |
123 |
121 122
|
anbi12d |
⊢ ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ↔ ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) 𝑦 ) ) ) |
124 |
|
unieq |
⊢ ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ∪ 𝑥 = ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ) |
125 |
124
|
eleq1d |
⊢ ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( ∪ 𝑥 ∈ 𝑡 ↔ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝑡 ) ) |
126 |
123 125
|
imbi12d |
⊢ ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ↔ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) 𝑦 ) → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝑡 ) ) ) |
127 |
126
|
rspcv |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝒫 𝑡 → ( ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) → ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) 𝑦 ) → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝑡 ) ) ) |
128 |
127
|
imp |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝒫 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) → ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) 𝑦 ) → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝑡 ) ) |
129 |
128
|
imp |
⊢ ( ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝒫 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ∧ ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) 𝑦 ) ) → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝑡 ) |
130 |
110 112 117 120 129
|
syl22anc |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ) ∈ 𝑡 ) |
131 |
56 130
|
eqeltrid |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑖 ) ) ∈ 𝑡 ) |
132 |
52 131
|
eqeltrrd |
⊢ ( ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝑥 ) → ∪ 𝑥 ∈ 𝑡 ) |
133 |
42 132
|
exlimddv |
⊢ ( ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → ∪ 𝑥 ∈ 𝑡 ) |
134 |
31 133
|
pm2.61dane |
⊢ ( ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑡 ) |
135 |
134
|
ex |
⊢ ( ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑡 ) ) |
136 |
135
|
ralrimiva |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑡 ) ) |
137 |
25 17 136
|
3jca |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ( 𝑂 ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑡 ) ) ) |
138 |
11 137
|
jca |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → ( 𝑡 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
139 |
|
vex |
⊢ 𝑡 ∈ V |
140 |
|
issiga |
⊢ ( 𝑡 ∈ V → ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑡 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑡 ) ) ) ) ) |
141 |
139 140
|
ax-mp |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑡 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
142 |
138 141
|
sylibr |
⊢ ( 𝑡 ∈ ( 𝑃 ∩ 𝐿 ) → 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
143 |
142
|
ssriv |
⊢ ( 𝑃 ∩ 𝐿 ) ⊆ ( sigAlgebra ‘ 𝑂 ) |
144 |
5 143
|
eqssi |
⊢ ( sigAlgebra ‘ 𝑂 ) = ( 𝑃 ∩ 𝐿 ) |