Metamath Proof Explorer


Theorem sigapildsys

Description: Sigma-algebra are exactly classes which are both lambda and pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypotheses dynkin.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
dynkin.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
Assertion sigapildsys ( sigAlgebra ‘ 𝑂 ) = ( 𝑃𝐿 )

Proof

Step Hyp Ref Expression
1 dynkin.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
2 dynkin.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
3 1 sigapisys ( sigAlgebra ‘ 𝑂 ) ⊆ 𝑃
4 2 sigaldsys ( sigAlgebra ‘ 𝑂 ) ⊆ 𝐿
5 3 4 ssini ( sigAlgebra ‘ 𝑂 ) ⊆ ( 𝑃𝐿 )
6 id ( 𝑡 ∈ ( 𝑃𝐿 ) → 𝑡 ∈ ( 𝑃𝐿 ) )
7 6 elin1d ( 𝑡 ∈ ( 𝑃𝐿 ) → 𝑡𝑃 )
8 1 ispisys ( 𝑡𝑃 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑡 ) ⊆ 𝑡 ) )
9 7 8 sylib ( 𝑡 ∈ ( 𝑃𝐿 ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑡 ) ⊆ 𝑡 ) )
10 9 simpld ( 𝑡 ∈ ( 𝑃𝐿 ) → 𝑡 ∈ 𝒫 𝒫 𝑂 )
11 10 elpwid ( 𝑡 ∈ ( 𝑃𝐿 ) → 𝑡 ⊆ 𝒫 𝑂 )
12 dif0 ( 𝑂 ∖ ∅ ) = 𝑂
13 6 elin2d ( 𝑡 ∈ ( 𝑃𝐿 ) → 𝑡𝐿 )
14 2 isldsys ( 𝑡𝐿 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) ) ) )
15 13 14 sylib ( 𝑡 ∈ ( 𝑃𝐿 ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) ) ) )
16 15 simprd ( 𝑡 ∈ ( 𝑃𝐿 ) → ( ∅ ∈ 𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) ) )
17 16 simp2d ( 𝑡 ∈ ( 𝑃𝐿 ) → ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 )
18 16 simp1d ( 𝑡 ∈ ( 𝑃𝐿 ) → ∅ ∈ 𝑡 )
19 difeq2 ( 𝑥 = ∅ → ( 𝑂𝑥 ) = ( 𝑂 ∖ ∅ ) )
20 eqidd ( 𝑥 = ∅ → 𝑡 = 𝑡 )
21 19 20 eleq12d ( 𝑥 = ∅ → ( ( 𝑂𝑥 ) ∈ 𝑡 ↔ ( 𝑂 ∖ ∅ ) ∈ 𝑡 ) )
22 21 rspcv ( ∅ ∈ 𝑡 → ( ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 → ( 𝑂 ∖ ∅ ) ∈ 𝑡 ) )
23 18 22 syl ( 𝑡 ∈ ( 𝑃𝐿 ) → ( ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 → ( 𝑂 ∖ ∅ ) ∈ 𝑡 ) )
24 17 23 mpd ( 𝑡 ∈ ( 𝑃𝐿 ) → ( 𝑂 ∖ ∅ ) ∈ 𝑡 )
25 12 24 eqeltrrid ( 𝑡 ∈ ( 𝑃𝐿 ) → 𝑂𝑡 )
26 unieq ( 𝑥 = ∅ → 𝑥 = ∅ )
27 uni0 ∅ = ∅
28 26 27 eqtrdi ( 𝑥 = ∅ → 𝑥 = ∅ )
29 28 adantl ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 = ∅ ) → 𝑥 = ∅ )
30 18 ad3antrrr ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 = ∅ ) → ∅ ∈ 𝑡 )
31 29 30 eqeltrd ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 = ∅ ) → 𝑥𝑡 )
32 vex 𝑥 ∈ V
33 32 0sdom ( ∅ ≺ 𝑥𝑥 ≠ ∅ )
34 33 biimpri ( 𝑥 ≠ ∅ → ∅ ≺ 𝑥 )
35 34 adantl ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → ∅ ≺ 𝑥 )
36 simplr ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ≼ ω )
37 nnenom ℕ ≈ ω
38 37 ensymi ω ≈ ℕ
39 domentr ( ( 𝑥 ≼ ω ∧ ω ≈ ℕ ) → 𝑥 ≼ ℕ )
40 36 38 39 sylancl ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ≼ ℕ )
41 fodomr ( ( ∅ ≺ 𝑥𝑥 ≼ ℕ ) → ∃ 𝑓 𝑓 : ℕ –onto𝑥 )
42 35 40 41 syl2anc ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑓 𝑓 : ℕ –onto𝑥 )
43 fveq2 ( 𝑛 = 𝑖 → ( 𝑓𝑛 ) = ( 𝑓𝑖 ) )
44 43 iundisj 𝑛 ∈ ℕ ( 𝑓𝑛 ) = 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) )
45 fofn ( 𝑓 : ℕ –onto𝑥𝑓 Fn ℕ )
46 fniunfv ( 𝑓 Fn ℕ → 𝑛 ∈ ℕ ( 𝑓𝑛 ) = ran 𝑓 )
47 45 46 syl ( 𝑓 : ℕ –onto𝑥 𝑛 ∈ ℕ ( 𝑓𝑛 ) = ran 𝑓 )
48 forn ( 𝑓 : ℕ –onto𝑥 → ran 𝑓 = 𝑥 )
49 48 unieqd ( 𝑓 : ℕ –onto𝑥 ran 𝑓 = 𝑥 )
50 47 49 eqtrd ( 𝑓 : ℕ –onto𝑥 𝑛 ∈ ℕ ( 𝑓𝑛 ) = 𝑥 )
51 44 50 eqtr3id ( 𝑓 : ℕ –onto𝑥 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) = 𝑥 )
52 51 adantl ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) = 𝑥 )
53 fvex ( 𝑓𝑛 ) ∈ V
54 difexg ( ( 𝑓𝑛 ) ∈ V → ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ∈ V )
55 53 54 ax-mp ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ∈ V
56 55 dfiun3 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
57 nfv 𝑛 ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 )
58 nfcv 𝑛 𝑦
59 nfmpt1 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
60 59 nfrn 𝑛 ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
61 58 60 nfel 𝑛 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
62 57 61 nfan 𝑛 ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) )
63 simpr ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
64 nfv 𝑖 ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 )
65 nfcv 𝑖 𝑦
66 nfcv 𝑖
67 nfcv 𝑖 ( 𝑓𝑛 )
68 nfiu1 𝑖 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 )
69 67 68 nfdif 𝑖 ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) )
70 66 69 nfmpt 𝑖 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
71 70 nfrn 𝑖 ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
72 65 71 nfel 𝑖 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
73 64 72 nfan 𝑖 ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) )
74 nfv 𝑖 𝑛 ∈ ℕ
75 73 74 nfan 𝑖 ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ )
76 65 69 nfeq 𝑖 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) )
77 75 76 nfan 𝑖 ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
78 6 ad7antr ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → 𝑡 ∈ ( 𝑃𝐿 ) )
79 simp-4r ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → 𝑥 ∈ 𝒫 𝑡 )
80 79 ad3antrrr ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → 𝑥 ∈ 𝒫 𝑡 )
81 80 elpwid ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → 𝑥𝑡 )
82 fof ( 𝑓 : ℕ –onto𝑥𝑓 : ℕ ⟶ 𝑥 )
83 82 ad4antlr ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → 𝑓 : ℕ ⟶ 𝑥 )
84 simplr ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → 𝑛 ∈ ℕ )
85 83 84 ffvelrnd ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( 𝑓𝑛 ) ∈ 𝑥 )
86 81 85 sseldd ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( 𝑓𝑛 ) ∈ 𝑡 )
87 fzofi ( 1 ..^ 𝑛 ) ∈ Fin
88 87 a1i ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( 1 ..^ 𝑛 ) ∈ Fin )
89 81 adantr ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → 𝑥𝑡 )
90 83 adantr ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → 𝑓 : ℕ ⟶ 𝑥 )
91 fzossnn ( 1 ..^ 𝑛 ) ⊆ ℕ
92 91 a1i ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( 1 ..^ 𝑛 ) ⊆ ℕ )
93 92 sselda ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → 𝑖 ∈ ℕ )
94 90 93 ffvelrnd ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → ( 𝑓𝑖 ) ∈ 𝑥 )
95 89 94 sseldd ( ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑛 ) ) → ( 𝑓𝑖 ) ∈ 𝑡 )
96 1 2 77 78 86 88 95 sigapildsyslem ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ∈ 𝑡 )
97 63 96 eqeltrd ( ( ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → 𝑦𝑡 )
98 simpr ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) → 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) )
99 eqid ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
100 99 55 elrnmpti ( 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
101 98 100 sylib ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) )
102 62 97 101 r19.29af ( ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ) → 𝑦𝑡 )
103 102 ex ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → ( 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → 𝑦𝑡 ) )
104 103 ssrdv ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ⊆ 𝑡 )
105 nnex ℕ ∈ V
106 105 mptex ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ V
107 106 rnex ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ V
108 elpwg ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ V → ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝒫 𝑡 ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ⊆ 𝑡 ) )
109 107 108 ax-mp ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝒫 𝑡 ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ⊆ 𝑡 )
110 104 109 sylibr ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝒫 𝑡 )
111 16 simp3d ( 𝑡 ∈ ( 𝑃𝐿 ) → ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) )
112 111 ad4antr ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) )
113 nnct ℕ ≼ ω
114 mptct ( ℕ ≼ ω → ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω )
115 113 114 ax-mp ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω
116 rnct ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω )
117 115 116 mp1i ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω )
118 43 iundisj2 Disj 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) )
119 disjrnmpt ( Disj 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) → Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) 𝑦 )
120 118 119 mp1i ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) 𝑦 )
121 breq1 ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( 𝑥 ≼ ω ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω ) )
122 disjeq1 ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) 𝑦 ) )
123 121 122 anbi12d ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ↔ ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) 𝑦 ) ) )
124 unieq ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) )
125 124 eleq1d ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( 𝑥𝑡 ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝑡 ) )
126 123 125 imbi12d ( 𝑥 = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) ↔ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) 𝑦 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝑡 ) ) )
127 126 rspcv ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝒫 𝑡 → ( ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) → ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) 𝑦 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝑡 ) ) )
128 127 imp ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝒫 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) ) → ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) 𝑦 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝑡 ) )
129 128 imp ( ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝒫 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑡 ) ) ∧ ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) 𝑦 ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝑡 )
130 110 112 117 120 129 syl22anc ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ) ∈ 𝑡 )
131 56 130 eqeltrid ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∖ 𝑖 ∈ ( 1 ..^ 𝑛 ) ( 𝑓𝑖 ) ) ∈ 𝑡 )
132 52 131 eqeltrrd ( ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑓 : ℕ –onto𝑥 ) → 𝑥𝑡 )
133 42 132 exlimddv ( ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → 𝑥𝑡 )
134 31 133 pm2.61dane ( ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ 𝑥 ≼ ω ) → 𝑥𝑡 )
135 134 ex ( ( 𝑡 ∈ ( 𝑃𝐿 ) ∧ 𝑥 ∈ 𝒫 𝑡 ) → ( 𝑥 ≼ ω → 𝑥𝑡 ) )
136 135 ralrimiva ( 𝑡 ∈ ( 𝑃𝐿 ) → ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → 𝑥𝑡 ) )
137 25 17 136 3jca ( 𝑡 ∈ ( 𝑃𝐿 ) → ( 𝑂𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → 𝑥𝑡 ) ) )
138 11 137 jca ( 𝑡 ∈ ( 𝑃𝐿 ) → ( 𝑡 ⊆ 𝒫 𝑂 ∧ ( 𝑂𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → 𝑥𝑡 ) ) ) )
139 vex 𝑡 ∈ V
140 issiga ( 𝑡 ∈ V → ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑡 ⊆ 𝒫 𝑂 ∧ ( 𝑂𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → 𝑥𝑡 ) ) ) ) )
141 139 140 ax-mp ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑡 ⊆ 𝒫 𝑂 ∧ ( 𝑂𝑡 ∧ ∀ 𝑥𝑡 ( 𝑂𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( 𝑥 ≼ ω → 𝑥𝑡 ) ) ) )
142 138 141 sylibr ( 𝑡 ∈ ( 𝑃𝐿 ) → 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) )
143 142 ssriv ( 𝑃𝐿 ) ⊆ ( sigAlgebra ‘ 𝑂 )
144 5 143 eqssi ( sigAlgebra ‘ 𝑂 ) = ( 𝑃𝐿 )