Step |
Hyp |
Ref |
Expression |
1 |
|
ispisys.p |
⊢ 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 } |
2 |
|
sigasspw |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ⊆ 𝒫 𝑂 ) |
3 |
|
velpw |
⊢ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ↔ 𝑡 ⊆ 𝒫 𝑂 ) |
4 |
2 3
|
sylibr |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ∈ 𝒫 𝒫 𝑂 ) |
5 |
|
elrnsiga |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ∈ ∪ ran sigAlgebra ) |
6 |
5
|
adantr |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑡 ∈ ∪ ran sigAlgebra ) |
7 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ↔ ( 𝑥 ∈ ( 𝒫 𝑡 ∩ Fin ) ∧ 𝑥 ≠ ∅ ) ) |
8 |
7
|
biimpi |
⊢ ( 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) → ( 𝑥 ∈ ( 𝒫 𝑡 ∩ Fin ) ∧ 𝑥 ≠ ∅ ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → ( 𝑥 ∈ ( 𝒫 𝑡 ∩ Fin ) ∧ 𝑥 ≠ ∅ ) ) |
10 |
9
|
simpld |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ∈ ( 𝒫 𝑡 ∩ Fin ) ) |
11 |
10
|
elin1d |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ∈ 𝒫 𝑡 ) |
12 |
10
|
elin2d |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ∈ Fin ) |
13 |
|
fict |
⊢ ( 𝑥 ∈ Fin → 𝑥 ≼ ω ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ≼ ω ) |
15 |
9
|
simprd |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ≠ ∅ ) |
16 |
|
sigaclci |
⊢ ( ( ( 𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ 𝑥 ≠ ∅ ) ) → ∩ 𝑥 ∈ 𝑡 ) |
17 |
6 11 14 15 16
|
syl22anc |
⊢ ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → ∩ 𝑥 ∈ 𝑡 ) |
18 |
17
|
ralrimiva |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ∀ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ∩ 𝑥 ∈ 𝑡 ) |
19 |
4 18
|
jca |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ∩ 𝑥 ∈ 𝑡 ) ) |
20 |
1
|
ispisys2 |
⊢ ( 𝑡 ∈ 𝑃 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ∩ 𝑥 ∈ 𝑡 ) ) |
21 |
19 20
|
sylibr |
⊢ ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ∈ 𝑃 ) |
22 |
21
|
ssriv |
⊢ ( sigAlgebra ‘ 𝑂 ) ⊆ 𝑃 |