| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ispisys.p | ⊢ 𝑃  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( fi ‘ 𝑠 )  ⊆  𝑠 } | 
						
							| 2 |  | sigasspw | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  𝑡  ⊆  𝒫  𝑂 ) | 
						
							| 3 |  | velpw | ⊢ ( 𝑡  ∈  𝒫  𝒫  𝑂  ↔  𝑡  ⊆  𝒫  𝑂 ) | 
						
							| 4 | 2 3 | sylibr | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  𝑡  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 5 |  | elrnsiga | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  𝑡  ∈  ∪  ran  sigAlgebra ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) )  →  𝑡  ∈  ∪  ran  sigAlgebra ) | 
						
							| 7 |  | eldifsn | ⊢ ( 𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } )  ↔  ( 𝑥  ∈  ( 𝒫  𝑡  ∩  Fin )  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 8 | 7 | biimpi | ⊢ ( 𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } )  →  ( 𝑥  ∈  ( 𝒫  𝑡  ∩  Fin )  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) )  →  ( 𝑥  ∈  ( 𝒫  𝑡  ∩  Fin )  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 10 | 9 | simpld | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) )  →  𝑥  ∈  ( 𝒫  𝑡  ∩  Fin ) ) | 
						
							| 11 | 10 | elin1d | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) )  →  𝑥  ∈  𝒫  𝑡 ) | 
						
							| 12 | 10 | elin2d | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) )  →  𝑥  ∈  Fin ) | 
						
							| 13 |  | fict | ⊢ ( 𝑥  ∈  Fin  →  𝑥  ≼  ω ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) )  →  𝑥  ≼  ω ) | 
						
							| 15 | 9 | simprd | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) )  →  𝑥  ≠  ∅ ) | 
						
							| 16 |  | sigaclci | ⊢ ( ( ( 𝑡  ∈  ∪  ran  sigAlgebra  ∧  𝑥  ∈  𝒫  𝑡 )  ∧  ( 𝑥  ≼  ω  ∧  𝑥  ≠  ∅ ) )  →  ∩  𝑥  ∈  𝑡 ) | 
						
							| 17 | 6 11 14 15 16 | syl22anc | ⊢ ( ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) )  →  ∩  𝑥  ∈  𝑡 ) | 
						
							| 18 | 17 | ralrimiva | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  ∀ 𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) ∩  𝑥  ∈  𝑡 ) | 
						
							| 19 | 4 18 | jca | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  ( 𝑡  ∈  𝒫  𝒫  𝑂  ∧  ∀ 𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) ∩  𝑥  ∈  𝑡 ) ) | 
						
							| 20 | 1 | ispisys2 | ⊢ ( 𝑡  ∈  𝑃  ↔  ( 𝑡  ∈  𝒫  𝒫  𝑂  ∧  ∀ 𝑥  ∈  ( ( 𝒫  𝑡  ∩  Fin )  ∖  { ∅ } ) ∩  𝑥  ∈  𝑡 ) ) | 
						
							| 21 | 19 20 | sylibr | ⊢ ( 𝑡  ∈  ( sigAlgebra ‘ 𝑂 )  →  𝑡  ∈  𝑃 ) | 
						
							| 22 | 21 | ssriv | ⊢ ( sigAlgebra ‘ 𝑂 )  ⊆  𝑃 |