Metamath Proof Explorer


Theorem sigapisys

Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis ispisys.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
Assertion sigapisys ( sigAlgebra ‘ 𝑂 ) ⊆ 𝑃

Proof

Step Hyp Ref Expression
1 ispisys.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
2 sigasspw ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ⊆ 𝒫 𝑂 )
3 velpw ( 𝑡 ∈ 𝒫 𝒫 𝑂𝑡 ⊆ 𝒫 𝑂 )
4 2 3 sylibr ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ∈ 𝒫 𝒫 𝑂 )
5 elrnsiga ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡 ran sigAlgebra )
6 5 adantr ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑡 ran sigAlgebra )
7 eldifsn ( 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ↔ ( 𝑥 ∈ ( 𝒫 𝑡 ∩ Fin ) ∧ 𝑥 ≠ ∅ ) )
8 7 biimpi ( 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) → ( 𝑥 ∈ ( 𝒫 𝑡 ∩ Fin ) ∧ 𝑥 ≠ ∅ ) )
9 8 adantl ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → ( 𝑥 ∈ ( 𝒫 𝑡 ∩ Fin ) ∧ 𝑥 ≠ ∅ ) )
10 9 simpld ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ∈ ( 𝒫 𝑡 ∩ Fin ) )
11 10 elin1d ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ∈ 𝒫 𝑡 )
12 10 elin2d ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ∈ Fin )
13 fict ( 𝑥 ∈ Fin → 𝑥 ≼ ω )
14 12 13 syl ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ≼ ω )
15 9 simprd ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥 ≠ ∅ )
16 sigaclci ( ( ( 𝑡 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡 ) ∧ ( 𝑥 ≼ ω ∧ 𝑥 ≠ ∅ ) ) → 𝑥𝑡 )
17 6 11 14 15 16 syl22anc ( ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) ) → 𝑥𝑡 )
18 17 ralrimiva ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ∀ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) 𝑥𝑡 )
19 4 18 jca ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) 𝑥𝑡 ) )
20 1 ispisys2 ( 𝑡𝑃 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀ 𝑥 ∈ ( ( 𝒫 𝑡 ∩ Fin ) ∖ { ∅ } ) 𝑥𝑡 ) )
21 19 20 sylibr ( 𝑡 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑡𝑃 )
22 21 ssriv ( sigAlgebra ‘ 𝑂 ) ⊆ 𝑃