| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ispisys.p |
|- P = { s e. ~P ~P O | ( fi ` s ) C_ s } |
| 2 |
|
sigasspw |
|- ( t e. ( sigAlgebra ` O ) -> t C_ ~P O ) |
| 3 |
|
velpw |
|- ( t e. ~P ~P O <-> t C_ ~P O ) |
| 4 |
2 3
|
sylibr |
|- ( t e. ( sigAlgebra ` O ) -> t e. ~P ~P O ) |
| 5 |
|
elrnsiga |
|- ( t e. ( sigAlgebra ` O ) -> t e. U. ran sigAlgebra ) |
| 6 |
5
|
adantr |
|- ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> t e. U. ran sigAlgebra ) |
| 7 |
|
eldifsn |
|- ( x e. ( ( ~P t i^i Fin ) \ { (/) } ) <-> ( x e. ( ~P t i^i Fin ) /\ x =/= (/) ) ) |
| 8 |
7
|
biimpi |
|- ( x e. ( ( ~P t i^i Fin ) \ { (/) } ) -> ( x e. ( ~P t i^i Fin ) /\ x =/= (/) ) ) |
| 9 |
8
|
adantl |
|- ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> ( x e. ( ~P t i^i Fin ) /\ x =/= (/) ) ) |
| 10 |
9
|
simpld |
|- ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x e. ( ~P t i^i Fin ) ) |
| 11 |
10
|
elin1d |
|- ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x e. ~P t ) |
| 12 |
10
|
elin2d |
|- ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x e. Fin ) |
| 13 |
|
fict |
|- ( x e. Fin -> x ~<_ _om ) |
| 14 |
12 13
|
syl |
|- ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x ~<_ _om ) |
| 15 |
9
|
simprd |
|- ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x =/= (/) ) |
| 16 |
|
sigaclci |
|- ( ( ( t e. U. ran sigAlgebra /\ x e. ~P t ) /\ ( x ~<_ _om /\ x =/= (/) ) ) -> |^| x e. t ) |
| 17 |
6 11 14 15 16
|
syl22anc |
|- ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> |^| x e. t ) |
| 18 |
17
|
ralrimiva |
|- ( t e. ( sigAlgebra ` O ) -> A. x e. ( ( ~P t i^i Fin ) \ { (/) } ) |^| x e. t ) |
| 19 |
4 18
|
jca |
|- ( t e. ( sigAlgebra ` O ) -> ( t e. ~P ~P O /\ A. x e. ( ( ~P t i^i Fin ) \ { (/) } ) |^| x e. t ) ) |
| 20 |
1
|
ispisys2 |
|- ( t e. P <-> ( t e. ~P ~P O /\ A. x e. ( ( ~P t i^i Fin ) \ { (/) } ) |^| x e. t ) ) |
| 21 |
19 20
|
sylibr |
|- ( t e. ( sigAlgebra ` O ) -> t e. P ) |
| 22 |
21
|
ssriv |
|- ( sigAlgebra ` O ) C_ P |