Metamath Proof Explorer


Theorem sigapisys

Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis ispisys.p
|- P = { s e. ~P ~P O | ( fi ` s ) C_ s }
Assertion sigapisys
|- ( sigAlgebra ` O ) C_ P

Proof

Step Hyp Ref Expression
1 ispisys.p
 |-  P = { s e. ~P ~P O | ( fi ` s ) C_ s }
2 sigasspw
 |-  ( t e. ( sigAlgebra ` O ) -> t C_ ~P O )
3 velpw
 |-  ( t e. ~P ~P O <-> t C_ ~P O )
4 2 3 sylibr
 |-  ( t e. ( sigAlgebra ` O ) -> t e. ~P ~P O )
5 elrnsiga
 |-  ( t e. ( sigAlgebra ` O ) -> t e. U. ran sigAlgebra )
6 5 adantr
 |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> t e. U. ran sigAlgebra )
7 eldifsn
 |-  ( x e. ( ( ~P t i^i Fin ) \ { (/) } ) <-> ( x e. ( ~P t i^i Fin ) /\ x =/= (/) ) )
8 7 biimpi
 |-  ( x e. ( ( ~P t i^i Fin ) \ { (/) } ) -> ( x e. ( ~P t i^i Fin ) /\ x =/= (/) ) )
9 8 adantl
 |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> ( x e. ( ~P t i^i Fin ) /\ x =/= (/) ) )
10 9 simpld
 |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x e. ( ~P t i^i Fin ) )
11 10 elin1d
 |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x e. ~P t )
12 10 elin2d
 |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x e. Fin )
13 fict
 |-  ( x e. Fin -> x ~<_ _om )
14 12 13 syl
 |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x ~<_ _om )
15 9 simprd
 |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x =/= (/) )
16 sigaclci
 |-  ( ( ( t e. U. ran sigAlgebra /\ x e. ~P t ) /\ ( x ~<_ _om /\ x =/= (/) ) ) -> |^| x e. t )
17 6 11 14 15 16 syl22anc
 |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> |^| x e. t )
18 17 ralrimiva
 |-  ( t e. ( sigAlgebra ` O ) -> A. x e. ( ( ~P t i^i Fin ) \ { (/) } ) |^| x e. t )
19 4 18 jca
 |-  ( t e. ( sigAlgebra ` O ) -> ( t e. ~P ~P O /\ A. x e. ( ( ~P t i^i Fin ) \ { (/) } ) |^| x e. t ) )
20 1 ispisys2
 |-  ( t e. P <-> ( t e. ~P ~P O /\ A. x e. ( ( ~P t i^i Fin ) \ { (/) } ) |^| x e. t ) )
21 19 20 sylibr
 |-  ( t e. ( sigAlgebra ` O ) -> t e. P )
22 21 ssriv
 |-  ( sigAlgebra ` O ) C_ P