| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ispisys.p |  |-  P = { s e. ~P ~P O | ( fi ` s ) C_ s } | 
						
							| 2 |  | sigasspw |  |-  ( t e. ( sigAlgebra ` O ) -> t C_ ~P O ) | 
						
							| 3 |  | velpw |  |-  ( t e. ~P ~P O <-> t C_ ~P O ) | 
						
							| 4 | 2 3 | sylibr |  |-  ( t e. ( sigAlgebra ` O ) -> t e. ~P ~P O ) | 
						
							| 5 |  | elrnsiga |  |-  ( t e. ( sigAlgebra ` O ) -> t e. U. ran sigAlgebra ) | 
						
							| 6 | 5 | adantr |  |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> t e. U. ran sigAlgebra ) | 
						
							| 7 |  | eldifsn |  |-  ( x e. ( ( ~P t i^i Fin ) \ { (/) } ) <-> ( x e. ( ~P t i^i Fin ) /\ x =/= (/) ) ) | 
						
							| 8 | 7 | biimpi |  |-  ( x e. ( ( ~P t i^i Fin ) \ { (/) } ) -> ( x e. ( ~P t i^i Fin ) /\ x =/= (/) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> ( x e. ( ~P t i^i Fin ) /\ x =/= (/) ) ) | 
						
							| 10 | 9 | simpld |  |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x e. ( ~P t i^i Fin ) ) | 
						
							| 11 | 10 | elin1d |  |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x e. ~P t ) | 
						
							| 12 | 10 | elin2d |  |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x e. Fin ) | 
						
							| 13 |  | fict |  |-  ( x e. Fin -> x ~<_ _om ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x ~<_ _om ) | 
						
							| 15 | 9 | simprd |  |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> x =/= (/) ) | 
						
							| 16 |  | sigaclci |  |-  ( ( ( t e. U. ran sigAlgebra /\ x e. ~P t ) /\ ( x ~<_ _om /\ x =/= (/) ) ) -> |^| x e. t ) | 
						
							| 17 | 6 11 14 15 16 | syl22anc |  |-  ( ( t e. ( sigAlgebra ` O ) /\ x e. ( ( ~P t i^i Fin ) \ { (/) } ) ) -> |^| x e. t ) | 
						
							| 18 | 17 | ralrimiva |  |-  ( t e. ( sigAlgebra ` O ) -> A. x e. ( ( ~P t i^i Fin ) \ { (/) } ) |^| x e. t ) | 
						
							| 19 | 4 18 | jca |  |-  ( t e. ( sigAlgebra ` O ) -> ( t e. ~P ~P O /\ A. x e. ( ( ~P t i^i Fin ) \ { (/) } ) |^| x e. t ) ) | 
						
							| 20 | 1 | ispisys2 |  |-  ( t e. P <-> ( t e. ~P ~P O /\ A. x e. ( ( ~P t i^i Fin ) \ { (/) } ) |^| x e. t ) ) | 
						
							| 21 | 19 20 | sylibr |  |-  ( t e. ( sigAlgebra ` O ) -> t e. P ) | 
						
							| 22 | 21 | ssriv |  |-  ( sigAlgebra ` O ) C_ P |