| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dynkin.p |
⊢ 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 } |
| 2 |
|
dynkin.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
| 3 |
|
dynkin.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 4 |
|
ldgenpisys.e |
⊢ 𝐸 = ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } |
| 5 |
|
ldgenpisys.1 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
| 6 |
|
ldgenpisyslem1.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐸 ) |
| 7 |
|
ssrab2 |
⊢ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ⊆ 𝒫 𝑂 |
| 8 |
|
pwexg |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V ) |
| 9 |
|
rabexg |
⊢ ( 𝒫 𝑂 ∈ V → { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ V ) |
| 10 |
|
elpwg |
⊢ ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ V → ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ 𝒫 𝒫 𝑂 ↔ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ⊆ 𝒫 𝑂 ) ) |
| 11 |
3 8 9 10
|
4syl |
⊢ ( 𝜑 → ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ 𝒫 𝒫 𝑂 ↔ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ⊆ 𝒫 𝑂 ) ) |
| 12 |
7 11
|
mpbiri |
⊢ ( 𝜑 → { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ 𝒫 𝒫 𝑂 ) |
| 13 |
|
ineq2 |
⊢ ( 𝑏 = ∅ → ( 𝐴 ∩ 𝑏 ) = ( 𝐴 ∩ ∅ ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑏 = ∅ → ( ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 ↔ ( 𝐴 ∩ ∅ ) ∈ 𝐸 ) ) |
| 15 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑂 |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 𝑂 ) |
| 17 |
2
|
isldsys |
⊢ ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) ) |
| 18 |
17
|
simprbi |
⊢ ( 𝑡 ∈ 𝐿 → ( ∅ ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) ) |
| 19 |
18
|
simp1d |
⊢ ( 𝑡 ∈ 𝐿 → ∅ ∈ 𝑡 ) |
| 20 |
19
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ∅ ∈ 𝑡 ) |
| 21 |
20
|
ex |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ( 𝑇 ⊆ 𝑡 → ∅ ∈ 𝑡 ) ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ∅ ∈ 𝑡 ) ) |
| 23 |
|
0ex |
⊢ ∅ ∈ V |
| 24 |
23
|
elintrab |
⊢ ( ∅ ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ∅ ∈ 𝑡 ) ) |
| 25 |
22 24
|
sylibr |
⊢ ( 𝜑 → ∅ ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ) |
| 26 |
|
in0 |
⊢ ( 𝐴 ∩ ∅ ) = ∅ |
| 27 |
25 26 4
|
3eltr4g |
⊢ ( 𝜑 → ( 𝐴 ∩ ∅ ) ∈ 𝐸 ) |
| 28 |
14 16 27
|
elrabd |
⊢ ( 𝜑 → ∅ ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
| 29 |
|
ineq2 |
⊢ ( 𝑏 = 𝑥 → ( 𝐴 ∩ 𝑏 ) = ( 𝐴 ∩ 𝑥 ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑏 = 𝑥 → ( ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 ↔ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) |
| 31 |
30
|
elrab |
⊢ ( 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ↔ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) |
| 32 |
|
pwidg |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂 ) |
| 33 |
3 32
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ 𝒫 𝑂 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) → 𝑂 ∈ 𝒫 𝑂 ) |
| 35 |
34
|
elpwdifcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ) |
| 36 |
2
|
pwldsys |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ 𝐿 ) |
| 37 |
3 36
|
syl |
⊢ ( 𝜑 → 𝒫 𝑂 ∈ 𝐿 ) |
| 38 |
1
|
ispisys |
⊢ ( 𝑇 ∈ 𝑃 ↔ ( 𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑇 ) ⊆ 𝑇 ) ) |
| 39 |
5 38
|
sylib |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑇 ) ⊆ 𝑇 ) ) |
| 40 |
39
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂 ) |
| 41 |
40
|
elpwid |
⊢ ( 𝜑 → 𝑇 ⊆ 𝒫 𝑂 ) |
| 42 |
|
sseq2 |
⊢ ( 𝑡 = 𝒫 𝑂 → ( 𝑇 ⊆ 𝑡 ↔ 𝑇 ⊆ 𝒫 𝑂 ) ) |
| 43 |
42
|
intminss |
⊢ ( ( 𝒫 𝑂 ∈ 𝐿 ∧ 𝑇 ⊆ 𝒫 𝑂 ) → ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ⊆ 𝒫 𝑂 ) |
| 44 |
37 41 43
|
syl2anc |
⊢ ( 𝜑 → ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ⊆ 𝒫 𝑂 ) |
| 45 |
4 44
|
eqsstrid |
⊢ ( 𝜑 → 𝐸 ⊆ 𝒫 𝑂 ) |
| 46 |
45 6
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝑂 ) |
| 47 |
46
|
elpwid |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑂 ) |
| 48 |
47
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → 𝐴 ⊆ 𝑂 ) |
| 49 |
|
difin |
⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝑥 ) ) = ( 𝐴 ∖ 𝑥 ) |
| 50 |
|
difin2 |
⊢ ( 𝐴 ⊆ 𝑂 → ( 𝐴 ∖ 𝑥 ) = ( ( 𝑂 ∖ 𝑥 ) ∩ 𝐴 ) ) |
| 51 |
49 50
|
eqtrid |
⊢ ( 𝐴 ⊆ 𝑂 → ( 𝐴 ∖ ( 𝐴 ∩ 𝑥 ) ) = ( ( 𝑂 ∖ 𝑥 ) ∩ 𝐴 ) ) |
| 52 |
|
incom |
⊢ ( ( 𝑂 ∖ 𝑥 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) |
| 53 |
51 52
|
eqtrdi |
⊢ ( 𝐴 ⊆ 𝑂 → ( 𝐴 ∖ ( 𝐴 ∩ 𝑥 ) ) = ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ) |
| 54 |
|
difuncomp |
⊢ ( 𝐴 ⊆ 𝑂 → ( 𝐴 ∖ ( 𝐴 ∩ 𝑥 ) ) = ( 𝑂 ∖ ( ( 𝑂 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝑥 ) ) ) ) |
| 55 |
53 54
|
eqtr3d |
⊢ ( 𝐴 ⊆ 𝑂 → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) = ( 𝑂 ∖ ( ( 𝑂 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝑥 ) ) ) ) |
| 56 |
48 55
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) = ( 𝑂 ∖ ( ( 𝑂 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝑥 ) ) ) ) |
| 57 |
|
difeq2 |
⊢ ( 𝑦 = ( ( 𝑂 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝑥 ) ) → ( 𝑂 ∖ 𝑦 ) = ( 𝑂 ∖ ( ( 𝑂 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝑥 ) ) ) ) |
| 58 |
57
|
eleq1d |
⊢ ( 𝑦 = ( ( 𝑂 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝑥 ) ) → ( ( 𝑂 ∖ 𝑦 ) ∈ 𝑡 ↔ ( 𝑂 ∖ ( ( 𝑂 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝑥 ) ) ) ∈ 𝑡 ) ) |
| 59 |
18
|
simp2d |
⊢ ( 𝑡 ∈ 𝐿 → ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
| 60 |
59
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
| 61 |
|
difeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑂 ∖ 𝑥 ) = ( 𝑂 ∖ 𝑦 ) ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ↔ ( 𝑂 ∖ 𝑦 ) ∈ 𝑡 ) ) |
| 63 |
62
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ↔ ∀ 𝑦 ∈ 𝑡 ( 𝑂 ∖ 𝑦 ) ∈ 𝑡 ) |
| 64 |
60 63
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ∀ 𝑦 ∈ 𝑡 ( 𝑂 ∖ 𝑦 ) ∈ 𝑡 ) |
| 65 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → 𝑡 ∈ 𝐿 ) |
| 66 |
6 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ) |
| 67 |
|
elintrabg |
⊢ ( 𝐴 ∈ 𝐸 → ( 𝐴 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → 𝐴 ∈ 𝑡 ) ) ) |
| 68 |
6 67
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → 𝐴 ∈ 𝑡 ) ) ) |
| 69 |
66 68
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → 𝐴 ∈ 𝑡 ) ) |
| 70 |
69
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ( 𝑇 ⊆ 𝑡 → 𝐴 ∈ 𝑡 ) ) |
| 71 |
70
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → 𝐴 ∈ 𝑡 ) |
| 72 |
71
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → 𝐴 ∈ 𝑡 ) |
| 73 |
|
difeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑂 ∖ 𝑥 ) = ( 𝑂 ∖ 𝐴 ) ) |
| 74 |
73
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ↔ ( 𝑂 ∖ 𝐴 ) ∈ 𝑡 ) ) |
| 75 |
59
|
adantr |
⊢ ( ( 𝑡 ∈ 𝐿 ∧ 𝐴 ∈ 𝑡 ) → ∀ 𝑥 ∈ 𝑡 ( 𝑂 ∖ 𝑥 ) ∈ 𝑡 ) |
| 76 |
|
simpr |
⊢ ( ( 𝑡 ∈ 𝐿 ∧ 𝐴 ∈ 𝑡 ) → 𝐴 ∈ 𝑡 ) |
| 77 |
74 75 76
|
rspcdva |
⊢ ( ( 𝑡 ∈ 𝐿 ∧ 𝐴 ∈ 𝑡 ) → ( 𝑂 ∖ 𝐴 ) ∈ 𝑡 ) |
| 78 |
65 72 77
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝑂 ∖ 𝐴 ) ∈ 𝑡 ) |
| 79 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) |
| 80 |
79
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) |
| 81 |
80 4
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝐴 ∩ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ) |
| 82 |
|
vex |
⊢ 𝑥 ∈ V |
| 83 |
82
|
inex2 |
⊢ ( 𝐴 ∩ 𝑥 ) ∈ V |
| 84 |
|
elintrabg |
⊢ ( ( 𝐴 ∩ 𝑥 ) ∈ V → ( ( 𝐴 ∩ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑥 ) ∈ 𝑡 ) ) ) |
| 85 |
83 84
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( ( 𝐴 ∩ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑥 ) ∈ 𝑡 ) ) ) |
| 86 |
81 85
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑥 ) ∈ 𝑡 ) ) |
| 87 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → 𝑇 ⊆ 𝑡 ) |
| 88 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑥 ) ∈ 𝑡 ) ∧ 𝑡 ∈ 𝐿 ) → ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑥 ) ∈ 𝑡 ) ) |
| 89 |
88
|
imp |
⊢ ( ( ( ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑥 ) ∈ 𝑡 ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝐴 ∩ 𝑥 ) ∈ 𝑡 ) |
| 90 |
86 65 87 89
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝐴 ∩ 𝑥 ) ∈ 𝑡 ) |
| 91 |
|
incom |
⊢ ( ( 𝑂 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝑥 ) ) = ( ( 𝐴 ∩ 𝑥 ) ∩ ( 𝑂 ∖ 𝐴 ) ) |
| 92 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝑥 ) ⊆ 𝐴 |
| 93 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝑂 ∖ 𝐴 ) ) = ∅ |
| 94 |
|
ssdisj |
⊢ ( ( ( 𝐴 ∩ 𝑥 ) ⊆ 𝐴 ∧ ( 𝐴 ∩ ( 𝑂 ∖ 𝐴 ) ) = ∅ ) → ( ( 𝐴 ∩ 𝑥 ) ∩ ( 𝑂 ∖ 𝐴 ) ) = ∅ ) |
| 95 |
92 93 94
|
mp2an |
⊢ ( ( 𝐴 ∩ 𝑥 ) ∩ ( 𝑂 ∖ 𝐴 ) ) = ∅ |
| 96 |
91 95
|
eqtri |
⊢ ( ( 𝑂 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝑥 ) ) = ∅ |
| 97 |
96
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( ( 𝑂 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝑥 ) ) = ∅ ) |
| 98 |
2 65 78 90 97
|
unelldsys |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( ( 𝑂 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝑥 ) ) ∈ 𝑡 ) |
| 99 |
58 64 98
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝑂 ∖ ( ( 𝑂 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝑥 ) ) ) ∈ 𝑡 ) |
| 100 |
56 99
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝑡 ) |
| 101 |
100
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐿 ) → ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝑡 ) ) |
| 102 |
101
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) → ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝑡 ) ) |
| 103 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝐸 → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ V ) |
| 104 |
6 103
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ V ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ V ) |
| 106 |
|
elintrabg |
⊢ ( ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ V → ( ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝑡 ) ) ) |
| 107 |
105 106
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) → ( ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝑡 ) ) ) |
| 108 |
102 107
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ) |
| 109 |
108 4
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) → ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝐸 ) |
| 110 |
35 109
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑥 ) ∈ 𝐸 ) ) → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝐸 ) ) |
| 111 |
31 110
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝐸 ) ) |
| 112 |
|
ineq2 |
⊢ ( 𝑏 = ( 𝑂 ∖ 𝑥 ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ) |
| 113 |
112
|
eleq1d |
⊢ ( 𝑏 = ( 𝑂 ∖ 𝑥 ) → ( ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 ↔ ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝐸 ) ) |
| 114 |
113
|
elrab |
⊢ ( ( 𝑂 ∖ 𝑥 ) ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ↔ ( ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ ( 𝑂 ∖ 𝑥 ) ) ∈ 𝐸 ) ) |
| 115 |
111 114
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) → ( 𝑂 ∖ 𝑥 ) ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
| 116 |
115
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ( 𝑂 ∖ 𝑥 ) ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
| 117 |
|
ineq2 |
⊢ ( 𝑏 = ∪ 𝑥 → ( 𝐴 ∩ 𝑏 ) = ( 𝐴 ∩ ∪ 𝑥 ) ) |
| 118 |
117
|
eleq1d |
⊢ ( 𝑏 = ∪ 𝑥 → ( ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 ↔ ( 𝐴 ∩ ∪ 𝑥 ) ∈ 𝐸 ) ) |
| 119 |
7
|
sspwi |
⊢ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ⊆ 𝒫 𝒫 𝑂 |
| 120 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
| 121 |
119 120
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → 𝑥 ∈ 𝒫 𝒫 𝑂 ) |
| 122 |
121
|
elpwunicl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ∪ 𝑥 ∈ 𝒫 𝑂 ) |
| 123 |
|
uniin2 |
⊢ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ∩ 𝑦 ) = ( 𝐴 ∩ ∪ 𝑥 ) |
| 124 |
|
vex |
⊢ 𝑦 ∈ V |
| 125 |
124
|
inex2 |
⊢ ( 𝐴 ∩ 𝑦 ) ∈ V |
| 126 |
125
|
dfiun3 |
⊢ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ∩ 𝑦 ) = ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) |
| 127 |
123 126
|
eqtr3i |
⊢ ( 𝐴 ∩ ∪ 𝑥 ) = ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) |
| 128 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → 𝑡 ∈ 𝐿 ) |
| 129 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
| 130 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ≼ ω |
| 131 |
|
nfdisj1 |
⊢ Ⅎ 𝑦 Disj 𝑦 ∈ 𝑥 𝑦 |
| 132 |
130 131
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) |
| 133 |
129 132
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
| 134 |
|
nfv |
⊢ Ⅎ 𝑦 𝑡 ∈ 𝐿 |
| 135 |
133 134
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) |
| 136 |
|
nfv |
⊢ Ⅎ 𝑦 𝑇 ⊆ 𝑡 |
| 137 |
135 136
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) |
| 138 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } → 𝑥 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
| 139 |
138
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → 𝑥 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
| 140 |
139
|
sselda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
| 141 |
|
ineq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝐴 ∩ 𝑏 ) = ( 𝐴 ∩ 𝑦 ) ) |
| 142 |
141
|
eleq1d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 ↔ ( 𝐴 ∩ 𝑦 ) ∈ 𝐸 ) ) |
| 143 |
142
|
elrab |
⊢ ( 𝑦 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ↔ ( 𝑦 ∈ 𝒫 𝑂 ∧ ( 𝐴 ∩ 𝑦 ) ∈ 𝐸 ) ) |
| 144 |
143
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } → ( 𝐴 ∩ 𝑦 ) ∈ 𝐸 ) |
| 145 |
140 144
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐴 ∩ 𝑦 ) ∈ 𝐸 ) |
| 146 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑡 ∈ 𝐿 ) |
| 147 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑇 ⊆ 𝑡 ) |
| 148 |
4
|
eleq2i |
⊢ ( ( 𝐴 ∩ 𝑦 ) ∈ 𝐸 ↔ ( 𝐴 ∩ 𝑦 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ) |
| 149 |
125
|
elintrab |
⊢ ( ( 𝐴 ∩ 𝑦 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 ) ) |
| 150 |
148 149
|
bitri |
⊢ ( ( 𝐴 ∩ 𝑦 ) ∈ 𝐸 ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 ) ) |
| 151 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 ) ∧ 𝑡 ∈ 𝐿 ) → ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 ) ) |
| 152 |
150 151
|
sylanb |
⊢ ( ( ( 𝐴 ∩ 𝑦 ) ∈ 𝐸 ∧ 𝑡 ∈ 𝐿 ) → ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 ) ) |
| 153 |
152
|
imp |
⊢ ( ( ( ( 𝐴 ∩ 𝑦 ) ∈ 𝐸 ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 ) |
| 154 |
145 146 147 153
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 ) |
| 155 |
154
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝑦 ∈ 𝑥 → ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 ) ) |
| 156 |
137 155
|
ralrimi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 ) |
| 157 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) |
| 158 |
157
|
rnmptss |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∩ 𝑦 ) ∈ 𝑡 → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ⊆ 𝑡 ) |
| 159 |
156 158
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ⊆ 𝑡 ) |
| 160 |
128 159
|
sselpwd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝒫 𝑡 ) |
| 161 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
| 162 |
161
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → 𝑥 ≼ ω ) |
| 163 |
|
1stcrestlem |
⊢ ( 𝑥 ≼ ω → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ≼ ω ) |
| 164 |
162 163
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ≼ ω ) |
| 165 |
161
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → Disj 𝑦 ∈ 𝑥 𝑦 ) |
| 166 |
|
disjin2 |
⊢ ( Disj 𝑦 ∈ 𝑥 𝑦 → Disj 𝑦 ∈ 𝑥 ( 𝐴 ∩ 𝑦 ) ) |
| 167 |
|
disjrnmpt |
⊢ ( Disj 𝑦 ∈ 𝑥 ( 𝐴 ∩ 𝑦 ) → Disj 𝑧 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑧 ) |
| 168 |
165 166 167
|
3syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → Disj 𝑧 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑧 ) |
| 169 |
|
nfmpt1 |
⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) |
| 170 |
169
|
nfrn |
⊢ Ⅎ 𝑦 ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) |
| 171 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑦 |
| 172 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑧 |
| 173 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
| 174 |
170 171 172 173
|
cbvdisjf |
⊢ ( Disj 𝑦 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑦 ↔ Disj 𝑧 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑧 ) |
| 175 |
168 174
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → Disj 𝑦 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑦 ) |
| 176 |
|
breq1 |
⊢ ( 𝑧 = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) → ( 𝑧 ≼ ω ↔ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ≼ ω ) ) |
| 177 |
172 170
|
disjeq1f |
⊢ ( 𝑧 = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) → ( Disj 𝑦 ∈ 𝑧 𝑦 ↔ Disj 𝑦 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑦 ) ) |
| 178 |
176 177
|
anbi12d |
⊢ ( 𝑧 = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) → ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ↔ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑦 ) ) ) |
| 179 |
|
unieq |
⊢ ( 𝑧 = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) → ∪ 𝑧 = ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ) |
| 180 |
179
|
eleq1d |
⊢ ( 𝑧 = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) → ( ∪ 𝑧 ∈ 𝑡 ↔ ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝑡 ) ) |
| 181 |
178 180
|
imbi12d |
⊢ ( 𝑧 = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) → ( ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑡 ) ↔ ( ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑦 ) → ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝑡 ) ) ) |
| 182 |
18
|
simp3d |
⊢ ( 𝑡 ∈ 𝐿 → ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ) |
| 183 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≼ ω ↔ 𝑧 ≼ ω ) ) |
| 184 |
|
disjeq1 |
⊢ ( 𝑥 = 𝑧 → ( Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ 𝑧 𝑦 ) ) |
| 185 |
183 184
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ↔ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) ) |
| 186 |
|
unieq |
⊢ ( 𝑥 = 𝑧 → ∪ 𝑥 = ∪ 𝑧 ) |
| 187 |
186
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ∪ 𝑥 ∈ 𝑡 ↔ ∪ 𝑧 ∈ 𝑡 ) ) |
| 188 |
185 187
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ↔ ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑡 ) ) ) |
| 189 |
188
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝑡 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑧 ∈ 𝒫 𝑡 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑡 ) ) |
| 190 |
182 189
|
sylib |
⊢ ( 𝑡 ∈ 𝐿 → ∀ 𝑧 ∈ 𝒫 𝑡 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑡 ) ) |
| 191 |
190
|
adantr |
⊢ ( ( 𝑡 ∈ 𝐿 ∧ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝒫 𝑡 ) → ∀ 𝑧 ∈ 𝒫 𝑡 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ∪ 𝑧 ∈ 𝑡 ) ) |
| 192 |
|
simpr |
⊢ ( ( 𝑡 ∈ 𝐿 ∧ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝒫 𝑡 ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝒫 𝑡 ) |
| 193 |
181 191 192
|
rspcdva |
⊢ ( ( 𝑡 ∈ 𝐿 ∧ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝒫 𝑡 ) → ( ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑦 ) → ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝑡 ) ) |
| 194 |
193
|
imp |
⊢ ( ( ( 𝑡 ∈ 𝐿 ∧ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝒫 𝑡 ) ∧ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ≼ ω ∧ Disj 𝑦 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) 𝑦 ) ) → ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝑡 ) |
| 195 |
128 160 164 175 194
|
syl22anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐴 ∩ 𝑦 ) ) ∈ 𝑡 ) |
| 196 |
127 195
|
eqeltrid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) ∧ 𝑇 ⊆ 𝑡 ) → ( 𝐴 ∩ ∪ 𝑥 ) ∈ 𝑡 ) |
| 197 |
196
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑡 ∈ 𝐿 ) → ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ ∪ 𝑥 ) ∈ 𝑡 ) ) |
| 198 |
197
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ ∪ 𝑥 ) ∈ 𝑡 ) ) |
| 199 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
| 200 |
199
|
inex2 |
⊢ ( 𝐴 ∩ ∪ 𝑥 ) ∈ V |
| 201 |
200
|
elintrab |
⊢ ( ( 𝐴 ∩ ∪ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → ( 𝐴 ∩ ∪ 𝑥 ) ∈ 𝑡 ) ) |
| 202 |
198 201
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝐴 ∩ ∪ 𝑥 ) ∈ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ) |
| 203 |
202 4
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝐴 ∩ ∪ 𝑥 ) ∈ 𝐸 ) |
| 204 |
118 122 203
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ∪ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
| 205 |
204
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ) |
| 206 |
205
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ) |
| 207 |
28 116 206
|
3jca |
⊢ ( 𝜑 → ( ∅ ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∧ ∀ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ( 𝑂 ∖ 𝑥 ) ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∧ ∀ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ) ) |
| 208 |
2
|
isldsys |
⊢ ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ 𝐿 ↔ ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∧ ∀ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ( 𝑂 ∖ 𝑥 ) ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∧ ∀ 𝑥 ∈ 𝒫 { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ) ) ) |
| 209 |
12 207 208
|
sylanbrc |
⊢ ( 𝜑 → { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ 𝐿 ) |