| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dynkin.p | ⊢ 𝑃  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( fi ‘ 𝑠 )  ⊆  𝑠 } | 
						
							| 2 |  | dynkin.l | ⊢ 𝐿  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) ) } | 
						
							| 3 |  | dynkin.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 4 |  | ldgenpisys.e | ⊢ 𝐸  =  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } | 
						
							| 5 |  | ldgenpisys.1 | ⊢ ( 𝜑  →  𝑇  ∈  𝑃 ) | 
						
							| 6 |  | ldgenpisyslem1.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐸 ) | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ⊆  𝒫  𝑂 | 
						
							| 8 |  | pwexg | ⊢ ( 𝑂  ∈  𝑉  →  𝒫  𝑂  ∈  V ) | 
						
							| 9 |  | rabexg | ⊢ ( 𝒫  𝑂  ∈  V  →  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  V ) | 
						
							| 10 |  | elpwg | ⊢ ( { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  V  →  ( { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  𝒫  𝒫  𝑂  ↔  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ⊆  𝒫  𝑂 ) ) | 
						
							| 11 | 3 8 9 10 | 4syl | ⊢ ( 𝜑  →  ( { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  𝒫  𝒫  𝑂  ↔  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ⊆  𝒫  𝑂 ) ) | 
						
							| 12 | 7 11 | mpbiri | ⊢ ( 𝜑  →  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 13 |  | ineq2 | ⊢ ( 𝑏  =  ∅  →  ( 𝐴  ∩  𝑏 )  =  ( 𝐴  ∩  ∅ ) ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑏  =  ∅  →  ( ( 𝐴  ∩  𝑏 )  ∈  𝐸  ↔  ( 𝐴  ∩  ∅ )  ∈  𝐸 ) ) | 
						
							| 15 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝑂 | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ∅  ∈  𝒫  𝑂 ) | 
						
							| 17 | 2 | isldsys | ⊢ ( 𝑡  ∈  𝐿  ↔  ( 𝑡  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝒫  𝑡 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 ) ) ) ) | 
						
							| 18 | 17 | simprbi | ⊢ ( 𝑡  ∈  𝐿  →  ( ∅  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡  ∧  ∀ 𝑥  ∈  𝒫  𝑡 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 ) ) ) | 
						
							| 19 | 18 | simp1d | ⊢ ( 𝑡  ∈  𝐿  →  ∅  ∈  𝑡 ) | 
						
							| 20 | 19 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ∅  ∈  𝑡 ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ( 𝑇  ⊆  𝑡  →  ∅  ∈  𝑡 ) ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ∅  ∈  𝑡 ) ) | 
						
							| 23 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 24 | 23 | elintrab | ⊢ ( ∅  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ∅  ∈  𝑡 ) ) | 
						
							| 25 | 22 24 | sylibr | ⊢ ( 𝜑  →  ∅  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } ) | 
						
							| 26 |  | in0 | ⊢ ( 𝐴  ∩  ∅ )  =  ∅ | 
						
							| 27 | 25 26 4 | 3eltr4g | ⊢ ( 𝜑  →  ( 𝐴  ∩  ∅ )  ∈  𝐸 ) | 
						
							| 28 | 14 16 27 | elrabd | ⊢ ( 𝜑  →  ∅  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 29 |  | ineq2 | ⊢ ( 𝑏  =  𝑥  →  ( 𝐴  ∩  𝑏 )  =  ( 𝐴  ∩  𝑥 ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑏  =  𝑥  →  ( ( 𝐴  ∩  𝑏 )  ∈  𝐸  ↔  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) ) | 
						
							| 31 | 30 | elrab | ⊢ ( 𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ↔  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) ) | 
						
							| 32 |  | pwidg | ⊢ ( 𝑂  ∈  𝑉  →  𝑂  ∈  𝒫  𝑂 ) | 
						
							| 33 | 3 32 | syl | ⊢ ( 𝜑  →  𝑂  ∈  𝒫  𝑂 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  →  𝑂  ∈  𝒫  𝑂 ) | 
						
							| 35 | 34 | elpwdifcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  →  ( 𝑂  ∖  𝑥 )  ∈  𝒫  𝑂 ) | 
						
							| 36 | 2 | pwldsys | ⊢ ( 𝑂  ∈  𝑉  →  𝒫  𝑂  ∈  𝐿 ) | 
						
							| 37 | 3 36 | syl | ⊢ ( 𝜑  →  𝒫  𝑂  ∈  𝐿 ) | 
						
							| 38 | 1 | ispisys | ⊢ ( 𝑇  ∈  𝑃  ↔  ( 𝑇  ∈  𝒫  𝒫  𝑂  ∧  ( fi ‘ 𝑇 )  ⊆  𝑇 ) ) | 
						
							| 39 | 5 38 | sylib | ⊢ ( 𝜑  →  ( 𝑇  ∈  𝒫  𝒫  𝑂  ∧  ( fi ‘ 𝑇 )  ⊆  𝑇 ) ) | 
						
							| 40 | 39 | simpld | ⊢ ( 𝜑  →  𝑇  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 41 | 40 | elpwid | ⊢ ( 𝜑  →  𝑇  ⊆  𝒫  𝑂 ) | 
						
							| 42 |  | sseq2 | ⊢ ( 𝑡  =  𝒫  𝑂  →  ( 𝑇  ⊆  𝑡  ↔  𝑇  ⊆  𝒫  𝑂 ) ) | 
						
							| 43 | 42 | intminss | ⊢ ( ( 𝒫  𝑂  ∈  𝐿  ∧  𝑇  ⊆  𝒫  𝑂 )  →  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ⊆  𝒫  𝑂 ) | 
						
							| 44 | 37 41 43 | syl2anc | ⊢ ( 𝜑  →  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ⊆  𝒫  𝑂 ) | 
						
							| 45 | 4 44 | eqsstrid | ⊢ ( 𝜑  →  𝐸  ⊆  𝒫  𝑂 ) | 
						
							| 46 | 45 6 | sseldd | ⊢ ( 𝜑  →  𝐴  ∈  𝒫  𝑂 ) | 
						
							| 47 | 46 | elpwid | ⊢ ( 𝜑  →  𝐴  ⊆  𝑂 ) | 
						
							| 48 | 47 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  𝐴  ⊆  𝑂 ) | 
						
							| 49 |  | difin | ⊢ ( 𝐴  ∖  ( 𝐴  ∩  𝑥 ) )  =  ( 𝐴  ∖  𝑥 ) | 
						
							| 50 |  | difin2 | ⊢ ( 𝐴  ⊆  𝑂  →  ( 𝐴  ∖  𝑥 )  =  ( ( 𝑂  ∖  𝑥 )  ∩  𝐴 ) ) | 
						
							| 51 | 49 50 | eqtrid | ⊢ ( 𝐴  ⊆  𝑂  →  ( 𝐴  ∖  ( 𝐴  ∩  𝑥 ) )  =  ( ( 𝑂  ∖  𝑥 )  ∩  𝐴 ) ) | 
						
							| 52 |  | incom | ⊢ ( ( 𝑂  ∖  𝑥 )  ∩  𝐴 )  =  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) ) | 
						
							| 53 | 51 52 | eqtrdi | ⊢ ( 𝐴  ⊆  𝑂  →  ( 𝐴  ∖  ( 𝐴  ∩  𝑥 ) )  =  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) ) ) | 
						
							| 54 |  | difuncomp | ⊢ ( 𝐴  ⊆  𝑂  →  ( 𝐴  ∖  ( 𝐴  ∩  𝑥 ) )  =  ( 𝑂  ∖  ( ( 𝑂  ∖  𝐴 )  ∪  ( 𝐴  ∩  𝑥 ) ) ) ) | 
						
							| 55 | 53 54 | eqtr3d | ⊢ ( 𝐴  ⊆  𝑂  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  =  ( 𝑂  ∖  ( ( 𝑂  ∖  𝐴 )  ∪  ( 𝐴  ∩  𝑥 ) ) ) ) | 
						
							| 56 | 48 55 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  =  ( 𝑂  ∖  ( ( 𝑂  ∖  𝐴 )  ∪  ( 𝐴  ∩  𝑥 ) ) ) ) | 
						
							| 57 |  | difeq2 | ⊢ ( 𝑦  =  ( ( 𝑂  ∖  𝐴 )  ∪  ( 𝐴  ∩  𝑥 ) )  →  ( 𝑂  ∖  𝑦 )  =  ( 𝑂  ∖  ( ( 𝑂  ∖  𝐴 )  ∪  ( 𝐴  ∩  𝑥 ) ) ) ) | 
						
							| 58 | 57 | eleq1d | ⊢ ( 𝑦  =  ( ( 𝑂  ∖  𝐴 )  ∪  ( 𝐴  ∩  𝑥 ) )  →  ( ( 𝑂  ∖  𝑦 )  ∈  𝑡  ↔  ( 𝑂  ∖  ( ( 𝑂  ∖  𝐴 )  ∪  ( 𝐴  ∩  𝑥 ) ) )  ∈  𝑡 ) ) | 
						
							| 59 | 18 | simp2d | ⊢ ( 𝑡  ∈  𝐿  →  ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡 ) | 
						
							| 60 | 59 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡 ) | 
						
							| 61 |  | difeq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑂  ∖  𝑥 )  =  ( 𝑂  ∖  𝑦 ) ) | 
						
							| 62 | 61 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑂  ∖  𝑥 )  ∈  𝑡  ↔  ( 𝑂  ∖  𝑦 )  ∈  𝑡 ) ) | 
						
							| 63 | 62 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡  ↔  ∀ 𝑦  ∈  𝑡 ( 𝑂  ∖  𝑦 )  ∈  𝑡 ) | 
						
							| 64 | 60 63 | sylib | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ∀ 𝑦  ∈  𝑡 ( 𝑂  ∖  𝑦 )  ∈  𝑡 ) | 
						
							| 65 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  𝑡  ∈  𝐿 ) | 
						
							| 66 | 6 4 | eleqtrdi | ⊢ ( 𝜑  →  𝐴  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } ) | 
						
							| 67 |  | elintrabg | ⊢ ( 𝐴  ∈  𝐸  →  ( 𝐴  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  𝐴  ∈  𝑡 ) ) ) | 
						
							| 68 | 6 67 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  𝐴  ∈  𝑡 ) ) ) | 
						
							| 69 | 66 68 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  𝐴  ∈  𝑡 ) ) | 
						
							| 70 | 69 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ( 𝑇  ⊆  𝑡  →  𝐴  ∈  𝑡 ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  𝐴  ∈  𝑡 ) | 
						
							| 72 | 71 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  𝐴  ∈  𝑡 ) | 
						
							| 73 |  | difeq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑂  ∖  𝑥 )  =  ( 𝑂  ∖  𝐴 ) ) | 
						
							| 74 | 73 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑂  ∖  𝑥 )  ∈  𝑡  ↔  ( 𝑂  ∖  𝐴 )  ∈  𝑡 ) ) | 
						
							| 75 | 59 | adantr | ⊢ ( ( 𝑡  ∈  𝐿  ∧  𝐴  ∈  𝑡 )  →  ∀ 𝑥  ∈  𝑡 ( 𝑂  ∖  𝑥 )  ∈  𝑡 ) | 
						
							| 76 |  | simpr | ⊢ ( ( 𝑡  ∈  𝐿  ∧  𝐴  ∈  𝑡 )  →  𝐴  ∈  𝑡 ) | 
						
							| 77 | 74 75 76 | rspcdva | ⊢ ( ( 𝑡  ∈  𝐿  ∧  𝐴  ∈  𝑡 )  →  ( 𝑂  ∖  𝐴 )  ∈  𝑡 ) | 
						
							| 78 | 65 72 77 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝑂  ∖  𝐴 )  ∈  𝑡 ) | 
						
							| 79 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) ) | 
						
							| 80 | 79 | simprd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) | 
						
							| 81 | 80 4 | eleqtrdi | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝐴  ∩  𝑥 )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } ) | 
						
							| 82 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 83 | 82 | inex2 | ⊢ ( 𝐴  ∩  𝑥 )  ∈  V | 
						
							| 84 |  | elintrabg | ⊢ ( ( 𝐴  ∩  𝑥 )  ∈  V  →  ( ( 𝐴  ∩  𝑥 )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑥 )  ∈  𝑡 ) ) ) | 
						
							| 85 | 83 84 | mp1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( ( 𝐴  ∩  𝑥 )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑥 )  ∈  𝑡 ) ) ) | 
						
							| 86 | 81 85 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑥 )  ∈  𝑡 ) ) | 
						
							| 87 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  𝑇  ⊆  𝑡 ) | 
						
							| 88 |  | rspa | ⊢ ( ( ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑥 )  ∈  𝑡 )  ∧  𝑡  ∈  𝐿 )  →  ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑥 )  ∈  𝑡 ) ) | 
						
							| 89 | 88 | imp | ⊢ ( ( ( ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑥 )  ∈  𝑡 )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝐴  ∩  𝑥 )  ∈  𝑡 ) | 
						
							| 90 | 86 65 87 89 | syl21anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝐴  ∩  𝑥 )  ∈  𝑡 ) | 
						
							| 91 |  | incom | ⊢ ( ( 𝑂  ∖  𝐴 )  ∩  ( 𝐴  ∩  𝑥 ) )  =  ( ( 𝐴  ∩  𝑥 )  ∩  ( 𝑂  ∖  𝐴 ) ) | 
						
							| 92 |  | inss1 | ⊢ ( 𝐴  ∩  𝑥 )  ⊆  𝐴 | 
						
							| 93 |  | disjdif | ⊢ ( 𝐴  ∩  ( 𝑂  ∖  𝐴 ) )  =  ∅ | 
						
							| 94 |  | ssdisj | ⊢ ( ( ( 𝐴  ∩  𝑥 )  ⊆  𝐴  ∧  ( 𝐴  ∩  ( 𝑂  ∖  𝐴 ) )  =  ∅ )  →  ( ( 𝐴  ∩  𝑥 )  ∩  ( 𝑂  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 95 | 92 93 94 | mp2an | ⊢ ( ( 𝐴  ∩  𝑥 )  ∩  ( 𝑂  ∖  𝐴 ) )  =  ∅ | 
						
							| 96 | 91 95 | eqtri | ⊢ ( ( 𝑂  ∖  𝐴 )  ∩  ( 𝐴  ∩  𝑥 ) )  =  ∅ | 
						
							| 97 | 96 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( ( 𝑂  ∖  𝐴 )  ∩  ( 𝐴  ∩  𝑥 ) )  =  ∅ ) | 
						
							| 98 | 2 65 78 90 97 | unelldsys | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( ( 𝑂  ∖  𝐴 )  ∪  ( 𝐴  ∩  𝑥 ) )  ∈  𝑡 ) | 
						
							| 99 | 58 64 98 | rspcdva | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝑂  ∖  ( ( 𝑂  ∖  𝐴 )  ∪  ( 𝐴  ∩  𝑥 ) ) )  ∈  𝑡 ) | 
						
							| 100 | 56 99 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝑡 ) | 
						
							| 101 | 100 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  ∧  𝑡  ∈  𝐿 )  →  ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝑡 ) ) | 
						
							| 102 | 101 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  →  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝑡 ) ) | 
						
							| 103 |  | inex1g | ⊢ ( 𝐴  ∈  𝐸  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  V ) | 
						
							| 104 | 6 103 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  V ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  V ) | 
						
							| 106 |  | elintrabg | ⊢ ( ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  V  →  ( ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝑡 ) ) ) | 
						
							| 107 | 105 106 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  →  ( ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝑡 ) ) ) | 
						
							| 108 | 102 107 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } ) | 
						
							| 109 | 108 4 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  →  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝐸 ) | 
						
							| 110 | 35 109 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑥 )  ∈  𝐸 ) )  →  ( ( 𝑂  ∖  𝑥 )  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝐸 ) ) | 
						
							| 111 | 31 110 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  →  ( ( 𝑂  ∖  𝑥 )  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝐸 ) ) | 
						
							| 112 |  | ineq2 | ⊢ ( 𝑏  =  ( 𝑂  ∖  𝑥 )  →  ( 𝐴  ∩  𝑏 )  =  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) ) ) | 
						
							| 113 | 112 | eleq1d | ⊢ ( 𝑏  =  ( 𝑂  ∖  𝑥 )  →  ( ( 𝐴  ∩  𝑏 )  ∈  𝐸  ↔  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝐸 ) ) | 
						
							| 114 | 113 | elrab | ⊢ ( ( 𝑂  ∖  𝑥 )  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ↔  ( ( 𝑂  ∖  𝑥 )  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  ( 𝑂  ∖  𝑥 ) )  ∈  𝐸 ) ) | 
						
							| 115 | 111 114 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  →  ( 𝑂  ∖  𝑥 )  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 116 | 115 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ( 𝑂  ∖  𝑥 )  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 117 |  | ineq2 | ⊢ ( 𝑏  =  ∪  𝑥  →  ( 𝐴  ∩  𝑏 )  =  ( 𝐴  ∩  ∪  𝑥 ) ) | 
						
							| 118 | 117 | eleq1d | ⊢ ( 𝑏  =  ∪  𝑥  →  ( ( 𝐴  ∩  𝑏 )  ∈  𝐸  ↔  ( 𝐴  ∩  ∪  𝑥 )  ∈  𝐸 ) ) | 
						
							| 119 | 7 | sspwi | ⊢ 𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ⊆  𝒫  𝒫  𝑂 | 
						
							| 120 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 121 | 119 120 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  𝑥  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 122 | 121 | elpwunicl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ∪  𝑥  ∈  𝒫  𝑂 ) | 
						
							| 123 |  | uniin2 | ⊢ ∪  𝑦  ∈  𝑥 ( 𝐴  ∩  𝑦 )  =  ( 𝐴  ∩  ∪  𝑥 ) | 
						
							| 124 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 125 | 124 | inex2 | ⊢ ( 𝐴  ∩  𝑦 )  ∈  V | 
						
							| 126 | 125 | dfiun3 | ⊢ ∪  𝑦  ∈  𝑥 ( 𝐴  ∩  𝑦 )  =  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) | 
						
							| 127 | 123 126 | eqtr3i | ⊢ ( 𝐴  ∩  ∪  𝑥 )  =  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) | 
						
							| 128 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  𝑡  ∈  𝐿 ) | 
						
							| 129 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 130 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ≼  ω | 
						
							| 131 |  | nfdisj1 | ⊢ Ⅎ 𝑦 Disj  𝑦  ∈  𝑥 𝑦 | 
						
							| 132 | 130 131 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 133 | 129 132 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) ) | 
						
							| 134 |  | nfv | ⊢ Ⅎ 𝑦 𝑡  ∈  𝐿 | 
						
							| 135 | 133 134 | nfan | ⊢ Ⅎ 𝑦 ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 ) | 
						
							| 136 |  | nfv | ⊢ Ⅎ 𝑦 𝑇  ⊆  𝑡 | 
						
							| 137 | 135 136 | nfan | ⊢ Ⅎ 𝑦 ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 ) | 
						
							| 138 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  →  𝑥  ⊆  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 139 | 138 | ad4antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  𝑥  ⊆  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 140 | 139 | sselda | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 141 |  | ineq2 | ⊢ ( 𝑏  =  𝑦  →  ( 𝐴  ∩  𝑏 )  =  ( 𝐴  ∩  𝑦 ) ) | 
						
							| 142 | 141 | eleq1d | ⊢ ( 𝑏  =  𝑦  →  ( ( 𝐴  ∩  𝑏 )  ∈  𝐸  ↔  ( 𝐴  ∩  𝑦 )  ∈  𝐸 ) ) | 
						
							| 143 | 142 | elrab | ⊢ ( 𝑦  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ↔  ( 𝑦  ∈  𝒫  𝑂  ∧  ( 𝐴  ∩  𝑦 )  ∈  𝐸 ) ) | 
						
							| 144 | 143 | simprbi | ⊢ ( 𝑦  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  →  ( 𝐴  ∩  𝑦 )  ∈  𝐸 ) | 
						
							| 145 | 140 144 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐴  ∩  𝑦 )  ∈  𝐸 ) | 
						
							| 146 |  | simpllr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  ∧  𝑦  ∈  𝑥 )  →  𝑡  ∈  𝐿 ) | 
						
							| 147 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  ∧  𝑦  ∈  𝑥 )  →  𝑇  ⊆  𝑡 ) | 
						
							| 148 | 4 | eleq2i | ⊢ ( ( 𝐴  ∩  𝑦 )  ∈  𝐸  ↔  ( 𝐴  ∩  𝑦 )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } ) | 
						
							| 149 | 125 | elintrab | ⊢ ( ( 𝐴  ∩  𝑦 )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑦 )  ∈  𝑡 ) ) | 
						
							| 150 | 148 149 | bitri | ⊢ ( ( 𝐴  ∩  𝑦 )  ∈  𝐸  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑦 )  ∈  𝑡 ) ) | 
						
							| 151 |  | rspa | ⊢ ( ( ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑦 )  ∈  𝑡 )  ∧  𝑡  ∈  𝐿 )  →  ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑦 )  ∈  𝑡 ) ) | 
						
							| 152 | 150 151 | sylanb | ⊢ ( ( ( 𝐴  ∩  𝑦 )  ∈  𝐸  ∧  𝑡  ∈  𝐿 )  →  ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  𝑦 )  ∈  𝑡 ) ) | 
						
							| 153 | 152 | imp | ⊢ ( ( ( ( 𝐴  ∩  𝑦 )  ∈  𝐸  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝐴  ∩  𝑦 )  ∈  𝑡 ) | 
						
							| 154 | 145 146 147 153 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐴  ∩  𝑦 )  ∈  𝑡 ) | 
						
							| 155 | 154 | ex | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝑦  ∈  𝑥  →  ( 𝐴  ∩  𝑦 )  ∈  𝑡 ) ) | 
						
							| 156 | 137 155 | ralrimi | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ∀ 𝑦  ∈  𝑥 ( 𝐴  ∩  𝑦 )  ∈  𝑡 ) | 
						
							| 157 |  | eqid | ⊢ ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  =  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) | 
						
							| 158 | 157 | rnmptss | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ∩  𝑦 )  ∈  𝑡  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ⊆  𝑡 ) | 
						
							| 159 | 156 158 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ⊆  𝑡 ) | 
						
							| 160 | 128 159 | sselpwd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝒫  𝑡 ) | 
						
							| 161 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) ) | 
						
							| 162 | 161 | simpld | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  𝑥  ≼  ω ) | 
						
							| 163 |  | 1stcrestlem | ⊢ ( 𝑥  ≼  ω  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ≼  ω ) | 
						
							| 164 | 162 163 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ≼  ω ) | 
						
							| 165 | 161 | simprd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  Disj  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 166 |  | disjin2 | ⊢ ( Disj  𝑦  ∈  𝑥 𝑦  →  Disj  𝑦  ∈  𝑥 ( 𝐴  ∩  𝑦 ) ) | 
						
							| 167 |  | disjrnmpt | ⊢ ( Disj  𝑦  ∈  𝑥 ( 𝐴  ∩  𝑦 )  →  Disj  𝑧  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑧 ) | 
						
							| 168 | 165 166 167 | 3syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  Disj  𝑧  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑧 ) | 
						
							| 169 |  | nfmpt1 | ⊢ Ⅎ 𝑦 ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) | 
						
							| 170 | 169 | nfrn | ⊢ Ⅎ 𝑦 ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) | 
						
							| 171 |  | nfcv | ⊢ Ⅎ 𝑧 𝑦 | 
						
							| 172 |  | nfcv | ⊢ Ⅎ 𝑦 𝑧 | 
						
							| 173 |  | id | ⊢ ( 𝑦  =  𝑧  →  𝑦  =  𝑧 ) | 
						
							| 174 | 170 171 172 173 | cbvdisjf | ⊢ ( Disj  𝑦  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑦  ↔  Disj  𝑧  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑧 ) | 
						
							| 175 | 168 174 | sylibr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  Disj  𝑦  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑦 ) | 
						
							| 176 |  | breq1 | ⊢ ( 𝑧  =  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  →  ( 𝑧  ≼  ω  ↔  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ≼  ω ) ) | 
						
							| 177 | 172 170 | disjeq1f | ⊢ ( 𝑧  =  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  →  ( Disj  𝑦  ∈  𝑧 𝑦  ↔  Disj  𝑦  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑦 ) ) | 
						
							| 178 | 176 177 | anbi12d | ⊢ ( 𝑧  =  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  →  ( ( 𝑧  ≼  ω  ∧  Disj  𝑦  ∈  𝑧 𝑦 )  ↔  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ≼  ω  ∧  Disj  𝑦  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑦 ) ) ) | 
						
							| 179 |  | unieq | ⊢ ( 𝑧  =  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  →  ∪  𝑧  =  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) ) | 
						
							| 180 | 179 | eleq1d | ⊢ ( 𝑧  =  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  →  ( ∪  𝑧  ∈  𝑡  ↔  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝑡 ) ) | 
						
							| 181 | 178 180 | imbi12d | ⊢ ( 𝑧  =  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  →  ( ( ( 𝑧  ≼  ω  ∧  Disj  𝑦  ∈  𝑧 𝑦 )  →  ∪  𝑧  ∈  𝑡 )  ↔  ( ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ≼  ω  ∧  Disj  𝑦  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑦 )  →  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝑡 ) ) ) | 
						
							| 182 | 18 | simp3d | ⊢ ( 𝑡  ∈  𝐿  →  ∀ 𝑥  ∈  𝒫  𝑡 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 ) ) | 
						
							| 183 |  | breq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ≼  ω  ↔  𝑧  ≼  ω ) ) | 
						
							| 184 |  | disjeq1 | ⊢ ( 𝑥  =  𝑧  →  ( Disj  𝑦  ∈  𝑥 𝑦  ↔  Disj  𝑦  ∈  𝑧 𝑦 ) ) | 
						
							| 185 | 183 184 | anbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ↔  ( 𝑧  ≼  ω  ∧  Disj  𝑦  ∈  𝑧 𝑦 ) ) ) | 
						
							| 186 |  | unieq | ⊢ ( 𝑥  =  𝑧  →  ∪  𝑥  =  ∪  𝑧 ) | 
						
							| 187 | 186 | eleq1d | ⊢ ( 𝑥  =  𝑧  →  ( ∪  𝑥  ∈  𝑡  ↔  ∪  𝑧  ∈  𝑡 ) ) | 
						
							| 188 | 185 187 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 )  ↔  ( ( 𝑧  ≼  ω  ∧  Disj  𝑦  ∈  𝑧 𝑦 )  →  ∪  𝑧  ∈  𝑡 ) ) ) | 
						
							| 189 | 188 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝒫  𝑡 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑡 )  ↔  ∀ 𝑧  ∈  𝒫  𝑡 ( ( 𝑧  ≼  ω  ∧  Disj  𝑦  ∈  𝑧 𝑦 )  →  ∪  𝑧  ∈  𝑡 ) ) | 
						
							| 190 | 182 189 | sylib | ⊢ ( 𝑡  ∈  𝐿  →  ∀ 𝑧  ∈  𝒫  𝑡 ( ( 𝑧  ≼  ω  ∧  Disj  𝑦  ∈  𝑧 𝑦 )  →  ∪  𝑧  ∈  𝑡 ) ) | 
						
							| 191 | 190 | adantr | ⊢ ( ( 𝑡  ∈  𝐿  ∧  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝒫  𝑡 )  →  ∀ 𝑧  ∈  𝒫  𝑡 ( ( 𝑧  ≼  ω  ∧  Disj  𝑦  ∈  𝑧 𝑦 )  →  ∪  𝑧  ∈  𝑡 ) ) | 
						
							| 192 |  | simpr | ⊢ ( ( 𝑡  ∈  𝐿  ∧  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝒫  𝑡 )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝒫  𝑡 ) | 
						
							| 193 | 181 191 192 | rspcdva | ⊢ ( ( 𝑡  ∈  𝐿  ∧  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝒫  𝑡 )  →  ( ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ≼  ω  ∧  Disj  𝑦  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑦 )  →  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝑡 ) ) | 
						
							| 194 | 193 | imp | ⊢ ( ( ( 𝑡  ∈  𝐿  ∧  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝒫  𝑡 )  ∧  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ≼  ω  ∧  Disj  𝑦  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) ) 𝑦 ) )  →  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝑡 ) | 
						
							| 195 | 128 160 164 175 194 | syl22anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐴  ∩  𝑦 ) )  ∈  𝑡 ) | 
						
							| 196 | 127 195 | eqeltrid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  ∧  𝑇  ⊆  𝑡 )  →  ( 𝐴  ∩  ∪  𝑥 )  ∈  𝑡 ) | 
						
							| 197 | 196 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ∧  𝑡  ∈  𝐿 )  →  ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  ∪  𝑥 )  ∈  𝑡 ) ) | 
						
							| 198 | 197 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  ∪  𝑥 )  ∈  𝑡 ) ) | 
						
							| 199 |  | vuniex | ⊢ ∪  𝑥  ∈  V | 
						
							| 200 | 199 | inex2 | ⊢ ( 𝐴  ∩  ∪  𝑥 )  ∈  V | 
						
							| 201 | 200 | elintrab | ⊢ ( ( 𝐴  ∩  ∪  𝑥 )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ∀ 𝑡  ∈  𝐿 ( 𝑇  ⊆  𝑡  →  ( 𝐴  ∩  ∪  𝑥 )  ∈  𝑡 ) ) | 
						
							| 202 | 198 201 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( 𝐴  ∩  ∪  𝑥 )  ∈  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } ) | 
						
							| 203 | 202 4 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( 𝐴  ∩  ∪  𝑥 )  ∈  𝐸 ) | 
						
							| 204 | 118 122 203 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ∪  𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 205 | 204 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } )  →  ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) ) | 
						
							| 206 | 205 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) ) | 
						
							| 207 | 28 116 206 | 3jca | ⊢ ( 𝜑  →  ( ∅  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∧  ∀ 𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ( 𝑂  ∖  𝑥 )  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∧  ∀ 𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) ) ) | 
						
							| 208 | 2 | isldsys | ⊢ ( { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  𝐿  ↔  ( { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∧  ∀ 𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ( 𝑂  ∖  𝑥 )  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∧  ∀ 𝑥  ∈  𝒫  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) ) ) ) | 
						
							| 209 | 12 207 208 | sylanbrc | ⊢ ( 𝜑  →  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  𝐿 ) |