Metamath Proof Explorer


Theorem ldgenpisyslem2

Description: Lemma for ldgenpisys . (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypotheses dynkin.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
dynkin.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
dynkin.o ( 𝜑𝑂𝑉 )
ldgenpisys.e 𝐸 = { 𝑡𝐿𝑇𝑡 }
ldgenpisys.1 ( 𝜑𝑇𝑃 )
ldgenpisyslem1.1 ( 𝜑𝐴𝐸 )
ldgenpisyslem2.1 ( 𝜑𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } )
Assertion ldgenpisyslem2 ( 𝜑𝐸 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } )

Proof

Step Hyp Ref Expression
1 dynkin.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
2 dynkin.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
3 dynkin.o ( 𝜑𝑂𝑉 )
4 ldgenpisys.e 𝐸 = { 𝑡𝐿𝑇𝑡 }
5 ldgenpisys.1 ( 𝜑𝑇𝑃 )
6 ldgenpisyslem1.1 ( 𝜑𝐴𝐸 )
7 ldgenpisyslem2.1 ( 𝜑𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } )
8 1 2 3 4 5 6 ldgenpisyslem1 ( 𝜑 → { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } ∈ 𝐿 )
9 8 7 jca ( 𝜑 → ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } ∈ 𝐿𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } ) )
10 sseq2 ( 𝑡 = { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } → ( 𝑇𝑡𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } ) )
11 10 elrab ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } ∈ { 𝑡𝐿𝑇𝑡 } ↔ ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } ∈ 𝐿𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } ) )
12 9 11 sylibr ( 𝜑 → { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } ∈ { 𝑡𝐿𝑇𝑡 } )
13 intss1 ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } ∈ { 𝑡𝐿𝑇𝑡 } → { 𝑡𝐿𝑇𝑡 } ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } )
14 12 13 syl ( 𝜑 { 𝑡𝐿𝑇𝑡 } ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } )
15 4 14 eqsstrid ( 𝜑𝐸 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴𝑏 ) ∈ 𝐸 } )