| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dynkin.p | ⊢ 𝑃  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( fi ‘ 𝑠 )  ⊆  𝑠 } | 
						
							| 2 |  | dynkin.l | ⊢ 𝐿  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) ) } | 
						
							| 3 |  | dynkin.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 4 |  | ldgenpisys.e | ⊢ 𝐸  =  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } | 
						
							| 5 |  | ldgenpisys.1 | ⊢ ( 𝜑  →  𝑇  ∈  𝑃 ) | 
						
							| 6 |  | ldgenpisyslem1.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐸 ) | 
						
							| 7 |  | ldgenpisyslem2.1 | ⊢ ( 𝜑  →  𝑇  ⊆  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 8 | 1 2 3 4 5 6 | ldgenpisyslem1 | ⊢ ( 𝜑  →  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  𝐿 ) | 
						
							| 9 | 8 7 | jca | ⊢ ( 𝜑  →  ( { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  𝐿  ∧  𝑇  ⊆  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) ) | 
						
							| 10 |  | sseq2 | ⊢ ( 𝑡  =  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  →  ( 𝑇  ⊆  𝑡  ↔  𝑇  ⊆  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) ) | 
						
							| 11 | 10 | elrab | ⊢ ( { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ↔  ( { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  𝐿  ∧  𝑇  ⊆  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) ) | 
						
							| 12 | 9 11 | sylibr | ⊢ ( 𝜑  →  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } ) | 
						
							| 13 |  | intss1 | ⊢ ( { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 }  ∈  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  →  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ⊆  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ⊆  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) | 
						
							| 15 | 4 14 | eqsstrid | ⊢ ( 𝜑  →  𝐸  ⊆  { 𝑏  ∈  𝒫  𝑂  ∣  ( 𝐴  ∩  𝑏 )  ∈  𝐸 } ) |