Step |
Hyp |
Ref |
Expression |
1 |
|
dynkin.p |
⊢ 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 } |
2 |
|
dynkin.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
3 |
|
dynkin.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
4 |
|
ldgenpisys.e |
⊢ 𝐸 = ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } |
5 |
|
ldgenpisys.1 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
6 |
|
ldgenpisyslem1.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐸 ) |
7 |
|
ldgenpisyslem2.1 |
⊢ ( 𝜑 → 𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
8 |
1 2 3 4 5 6
|
ldgenpisyslem1 |
⊢ ( 𝜑 → { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ 𝐿 ) |
9 |
8 7
|
jca |
⊢ ( 𝜑 → ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ 𝐿 ∧ 𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ) |
10 |
|
sseq2 |
⊢ ( 𝑡 = { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } → ( 𝑇 ⊆ 𝑡 ↔ 𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ) |
11 |
10
|
elrab |
⊢ ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ 𝐿 ∧ 𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) ) |
12 |
9 11
|
sylibr |
⊢ ( 𝜑 → { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ) |
13 |
|
intss1 |
⊢ ( { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ∈ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } → ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
15 |
4 14
|
eqsstrid |
⊢ ( 𝜑 → 𝐸 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |