Step |
Hyp |
Ref |
Expression |
1 |
|
dynkin.p |
⊢ 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 } |
2 |
|
dynkin.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
3 |
|
dynkin.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
4 |
|
ldgenpisys.e |
⊢ 𝐸 = ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } |
5 |
|
ldgenpisys.1 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
6 |
|
ldgenpisyslem3.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) |
7 |
|
id |
⊢ ( 𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡 ) |
8 |
7
|
rgenw |
⊢ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡 ) |
9 |
|
ssintrab |
⊢ ( 𝑇 ⊆ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } ↔ ∀ 𝑡 ∈ 𝐿 ( 𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡 ) ) |
10 |
8 9
|
mpbir |
⊢ 𝑇 ⊆ ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } |
11 |
10 4
|
sseqtrri |
⊢ 𝑇 ⊆ 𝐸 |
12 |
11 6
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ 𝐸 ) |
13 |
1
|
ispisys |
⊢ ( 𝑇 ∈ 𝑃 ↔ ( 𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑇 ) ⊆ 𝑇 ) ) |
14 |
5 13
|
sylib |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑇 ) ⊆ 𝑇 ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂 ) |
16 |
|
elpwi |
⊢ ( 𝑇 ∈ 𝒫 𝒫 𝑂 → 𝑇 ⊆ 𝒫 𝑂 ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ 𝒫 𝑂 ) |
18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑇 ) → 𝑇 ∈ 𝑃 ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑇 ) → 𝐴 ∈ 𝑇 ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑇 ) → 𝑏 ∈ 𝑇 ) |
21 |
1
|
inelpisys |
⊢ ( ( 𝑇 ∈ 𝑃 ∧ 𝐴 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) → ( 𝐴 ∩ 𝑏 ) ∈ 𝑇 ) |
22 |
18 19 20 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑇 ) → ( 𝐴 ∩ 𝑏 ) ∈ 𝑇 ) |
23 |
11 22
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑇 ) → ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 ) |
24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝑇 ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 ) |
25 |
17 24
|
jca |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝒫 𝑂 ∧ ∀ 𝑏 ∈ 𝑇 ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 ) ) |
26 |
|
ssrab |
⊢ ( 𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ↔ ( 𝑇 ⊆ 𝒫 𝑂 ∧ ∀ 𝑏 ∈ 𝑇 ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 ) ) |
27 |
25 26
|
sylibr |
⊢ ( 𝜑 → 𝑇 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |
28 |
1 2 3 4 5 12 27
|
ldgenpisyslem2 |
⊢ ( 𝜑 → 𝐸 ⊆ { 𝑏 ∈ 𝒫 𝑂 ∣ ( 𝐴 ∩ 𝑏 ) ∈ 𝐸 } ) |